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1 INTRODUCTION

In (McCarthy and Hayes 1969), we proposed dividing the artificial intelli-
gence problem into two parts—an epistemological part and a heuristic part.
This lecture further explains this division, explains some of the epistemolog-
ical problems, and presents some new results and approaches.

The epistemological part of AI studies what kinds of facts about the
world are available to an observer with given opportunities to observe, how
these facts can be represented in the memory of a computer, and what rules
permit legitimate conclusions to be drawn from these facts. It leaves aside
the heuristic problems of how to search spaces of possibilities and how to
match patterns.

Considering epistemological problems separately has the following advan-
tages:

1. The same problems of what information is available to an observer and
what conclusions can be drawn from information arise in connection with a
variety of problem solving tasks.
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2. A single solution of the epistemological problems can support a wide
variety of heuristic approaches to a problem.

3. AI is a very difficult scientific problem, so there are great advantages
in finding parts of the problem that can be separated out and separately
attacked.

4. As the reader will see from the examples in the next section, it is quite
difficult to formalize the facts of common knowledge. Existing programs that
manipulate facts in some of the domains are confined to special cases and
don’t face the difficulties that must be overcome to achieve very intelligent
behavior.

We have found first order logic to provide suitable languages for express-
ing facts about the world for epistemological research. Recently we have
found that introducing concepts as individuals makes possible a first order
logic expression of facts usually expressed in modal logic but with important
advantages over modal logic—and so far no disadvantages.

In AI literature, the term predicate calculus is usually extended to cover
the whole of first order logic. While predicate calculus includes just for-
mulas built up from variables using predicate symbols, logical connectives,
and quantifiers, first order logic also allows the use of function symbols to
form terms and in its semantics interprets the equality symbol as stand-
ing for identity. Our first order systems further use conditional expressions
(nonrecursive) to form terms and λ-expressions with individual variables to
form new function symbols. All these extensions are logically inessential,
because every formula that includes them can be replaced by a formula of
pure predicate calculus whose validity is equivalent to it. The extensions
are heuristically nontrivial, because the equivalent predicate calculus may be
much longer and is usually much more difficult to understand—for man or
machine.

The use of first order logic in epistemological research is a separate is-
sue from whether first order sentences are appropriate data structures for
representing information within a program. As to the latter, sentences in
logic are at one end of a spectrum of representations; they are easy to com-
municate, have logical consequences and can be logical consequences, and
they can be meaningful in a wide context. Taking action on the basis of
information stored as sentences, is slow and they are not the most compact
representation of information. The opposite extreme is to build the informa-
tion into hardware, next comes building it into machine language program,
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then a language like LISP, and then a language like MICROPLANNER,
and then perhaps productions. Compiling or hardware building or “auto-
matic programming” or just planning takes information from a more context
independent form to a faster but more context dependent form. A clear ex-
pression of this is the transition from first order logic to MICROPLANNER,
where much information is represented similarly but with a specification of
how the information is to be used. A large AI system should represent some
information as first order logic sentences and other information should be
compiled. In fact, it will often be necessary to represent the same informa-
tion in several ways. Thus a ball-player’s habit of keeping his eye on the ball
is built into his “program”, but it is also explicitly represented as a sentence
so that the advice can be communicated.

Whether first order logic makes a good programming language is yet
another issue. So far it seems to have the qualities Samuel Johnson ascribed
to a woman preaching or a dog walking on its hind legs—one is sufficiently
impressed by seeing it done at all that one doesn’t demand it be done well.

Suppose we have a theory of a certain class of phenomena axiomatized in
(say) first order logic. We regard the theory as adequate for describing the
epistemological aspects of a goal seeking process involving these phenomena
provided the following criterion is satisfied:

Imagine a robot such that its inputs become sentences of the theory stored
in the robot’s database, and such that whenever a sentence of the form “I

should emit output X now” appears in its database, the robot emits out-
put X. Suppose that new sentences appear in its database only as logical
consequences of sentences already in the database. The deduction of these
sentences also uses general sentences stored in the database at the beginning
constituting the theory being tested. Usually a database of sentences permits
many different deductions to be made so that a deduction program would
have to choose which deduction to make. If there was no program that could
achieve the goal by making deductions allowed by the theory no matter how
fast the program ran, we would have to say that the theory was epistemo-
logically inadequate. A theory that was epistemologically adequate would
be considered heuristically inadequate if no program running at a reason-
able speed with any representation of the facts expressed by the data could
do the job. We believe that most present AI formalisms are epistemologi-
cally inadequate for general intelligence; i.e. they wouldn’t achieve enough
goals requiring general intelligence no matter how fast they were allowed to
run. This is because the epistemological problems discussed in the following
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sections haven’t even been attacked yet.
The word “epistemology” is used in this paper substantially as many

philosophers use it, but the problems considered have a different emphasis.
Philosophers emphasize what is potentially knowable with maximal oppor-
tunities to observe and compute, whereas AI must take into account what is
knowable with available observational and computational facilities. Even so,
many of the same formalizations have both philosophical and AI interest.

The subsequent sections of this paper list some epistemological problems,
discuss some first order formalizations, introduce concepts as objects and use
them to express facts about knowledge, describe a new mode of reasoning
called circumscription, and place the AI problem in a philosphical setting.

2 EPISTEMOLOGICAL PROBLEMS

We will discuss what facts a person or robot must take into account in order
to achieve a goal by some strategy of action. We will ignore the question
of how these facts are represented, e.g., whether they are represented by
sentences from which deductions are made or whether they are built into the
program. We start with great generality, so there are many difficulties. We
obtain successively easier problems by assuming that the difficulties we have
recognized don’t occur until we get to a class of problems we think we can
solve.

1. We begin by asking whether solving the problem requires the co-
operation of other people or overcoming their opposition. If either is true,
there are two subcases. In the first subcase, the other people’s desires and
goals must be taken into account, and the actions they will take in given
circumstances predicted on the hypothesis that they will try to achieve their
goals, which may have to be discovered. The problem is even more difficult
if bargaining is involved, because then the problems and indeterminacies of
game theory are relevant. Even if bargaining is not involved, the robot still
must “put himself in the place of the other people with whom he interacts”.
Facts like a person wanting a thing or a person disliking another must be
described.

The second subcase makes the assumption that the other people can
be regarded as machines with known input-output behavior. This is often
a good assumption, e.g., one assumes that a clerk in a store will sell the
goods in exchange for their price and that a professor will assign a grade
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in accordance with the quality of the work done. Neither the goals of the
clerk or the professor need be taken into account; either might well regard
an attempt to use them to optimize the interaction as an invasion of privacy.
In such circumstances, man usually prefers to be regarded as a machine.

Let us now suppose that either other people are not involved in the prob-
lem or that the information available about their actions takes the form of
input-output relations and does not involve understanding their goals.

2. The second question is whether the strategy involves the acquisition of
knowledge. Even if we can treat other people as machines, we still may have
to reason about what they know. Thus an airline clerk knows what airplanes
fly from here to there and when, although he will tell you when asked without
your having to motivate him. One must also consider information in books
and in tables. The latter information is described by other information.

The second subcase of knowledge is according to whether the information
obtained can be simply plugged into a program or whether it enters in a more
complex way. Thus if the robot must telephone someone, its program can
simply dial the number obtained, but it might have to ask a question, “How

can I get in touch with Mike?” and reason about how to use the resulting
information in conjunction with other information. The general distinction
may be according to whether new sentences are generated or whether values
are just assigned to variables.

An example worth considering is that a sophisticated air traveler rarely
asks how he will get from the arriving flight to the departing flight at an
airport where he must change planes. He is confident that the information
will be available in a form he can understand at the time he will need it.

If the strategy is embodied in a program that branches on an environ-
mental condition or reads a numerical parameter from the environment, we
can regard it as obtaining knowledge, but this is obviously an easier case
than those we have discussed.

3. A problem is more difficult if it involves concurrent events and actions.
To me this seems to be the most difficult unsolved epistemological problem for
AI—how to express rules that give the effects of actions and events when they
occur concurrently. We may contrast this with the sequential case treated in
(McCarthy and Hayes 1969). In the sequential case we can write

s′ = result(e, s) (1)

where s′ is the situation that results when event e occurs in situation s.
The effects of e can be described by sentences relating s′, e and s. One can
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attempt a similar formalism giving a partial situation that results from an
event in another partial situation, but it is difficult to see how to apply this
to cases in which other events may affect with the occurrence.

When events are concurrent, it is usually necessary to regard time as
continuous. We have events like raining until the reservoir overflows and
questions like Where was his train when we wanted to call him?.

Computer science has recently begun to formalize parallel processes so
that it is sometimes possible to prove that a system of parallel processes will
meet its specifications. However, the knowledge available to a robot of the
other processes going on in the world will rarely take the form of a Petri
net or any of the other formalisms used in engineering or computer science.
In fact, anyone who wishes to prove correct an airline reservation system
or an air traffic control system must use information about the behavior of
the external world that is less specific than a program. Nevertheless, the
formalisms for expressing facts about parallel and indeterminate programs
provide a start for axiomatizing concurrent action.

4. A robot must be able to express knowledge about space, and the
locations, shapes and layouts of objects in space. Present programs treat
only very special cases. Usually locations are discrete—block A may be on
block B but the formalisms do not allow anything to be said about where
on block B it is, and what shape space is left on block B for placing other
blocks or whether block A could be moved to project out a bit in order to
place another block. A few are more sophisticated, but the objects must have
simple geometric shapes. A formalism capable of representing the geometric
information people get from seeing and handling objects has not, to my
knowledge, been approached.

The difficulty in expressing such facts is indicated by the limitations of
English in expressing human visual knowledge. We can describe regular
geometric shapes precisely in English (fortified by mathematics), but the
information we use for recognizing another person’s face cannot ordinarily
be transmitted in words. We can answer many more questions in the presence
of a scene than we can from memory.

5. The relation between three dimensional objects and their two dimen-
sional retinal or camera images is mostly untreated. Contrary to some philo-
sophical positions, the three dimensional object is treated by our minds as
distinct from its appearances. People blind from birth can still communicate
in the same language as sighted people about three dimensional objects. We
need a formalism that treats three dimensional objects as instances of pat-
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terns and their two dimensional appearances as projections of these patterns
modified by lighting and occlusion.

6. Objects can be made by shaping materials and by combining other
objects. They can also be taken apart, cut apart or destroyed in various
ways. What people know about the relations between materials and objects
remains to be described.

7. Modal concepts like event e1 caused event e2 and person e can do action

a are needed. (McCarthy and Hayes 1969) regards ability as a function of a
person’s position in a causal system and not at all as a function of his internal
structure. This still seems correct, but that treatment is only metaphysically
adequate, because it doesn’t provide for expressing the information about
ability that people actually have.

8. Suppose now that the problem can be formalized in terms of a single
state that is changed by events. In interesting cases, the set of components of
the state depends on the problem, but common general knowledge is usually
expressed in terms of the effect of an action on one or a few components of
the state. However, it cannot always be assumed that the other components
are unchanged, especially because the state can be described in a variety
of co-ordinate systems and the meaning of changing a single co-ordinate
depends on the co-ordinate system. The problem of expressing information
about what remains unchanged by an event was called the frame problem in
(McCarthy and Hayes 1969). Minsky subsequently confused matters by using
the word “frame” for patterns into which situations may fit. (His hypothesis
seems to have been that almost all situations encountered in human problem
solving fit into a small number of previously known patterns of situation and
goal. I regard this as unlikely in difficult problems).

9. The frame problem may be a subcase of what we call the qualification

problem, and a good solution of the qualification problem may solve the frame
problem also. In the missionaries and cannibals problem, a boat holding two
people is stated to be available. In the statement of the problem, nothing is
said about how boats are used to cross rivers, so obviously this information
must come from common knowledge, and a computer program capable of
solving the problem from an English description or from a translation of
this description into logic must have the requisite common knowledge. The
simplest statement about the use of boats says something like, “If a boat is at

one point on the shore of a body of water, and a set of things enter the boat,

and the boat is propelled to the another point on the shore, and the things exit

the boat, then they will be at the second point on the shore”. However, this
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statement is too rigid to be true, because anyone will admit that if the boat is
a rowboat and has a leak or no oars, the action may not achieve its intended
result. One might try amending the common knowledge statement about
boats, but this encounters difficulties when a critic demands a qualification
that the vertical exhaust stack of a diesel boat must not be struck square by
a cow turd dropped by a passing hawk or some other event that no-one has
previously thought of. We need to be able to say that the boat can be used as
a vehicle for crossing a body of water unless something prevents it. However,
since we are not willing to delimit in advance possible circumstances that
may prevent the use of the boat, there is still a problem of proving or at
least conjecturing that nothing prevents the use of the boat. A method of
reasoning called circumscription, described in a subsequent section of this
paper, is a candidate for solving the qualification problem. The reduction
of the frame problem to the qualification problem has not been fully carried
out, however.

3 CIRCUMSCRIPTION—A WAY OF JUMP-

ING TO CONCLUSIONS

There is an intuition that not all human reasoning can be translated into
deduction in some formal system of mathematical logic, and therefore math-
ematical logic should be rejected as a formalism for expressing what a robot
should know about the world. The intuition in itself doesn’t carry a convinc-
ing idea of what is lacking and how it might be supplied.

We can confirm part of the intuition by describing a previously unformal-
ized mode of reasoning called circumscription, which we can show does not
correspond to deduction in a mathematical system. The conclusions it yields
are just conjectures and sometimes even introduce inconsistency. We will ar-
gue that humans often use circumscription, and robots must too. The second
part of the intuition—the rejection of mathematical logic—is not confirmed;
the new mode of reasoning is best understood and used within a mathe-
matical logical framework and co-ordinates well with mathematical logical
deduction. We think circumscription accounts for some of the successes and
some of the errors of human reasoning.

The intuitive idea of circumscription is as follows: We know some objects
in a given class and we have some ways of generating more. We jump to the
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conclusion that this gives all the objects in the class. Thus we circumscribe

the class to the objects we know how to generate.
For example, suppose that objects a, b and c satisfy the predicate P and

that the functions f(x) and g(x, y) take arguments satisfying P into values
also satisfying P . The first order logic expression of these facts is

P (a)∧P (b)∧P (c)∧(∀x)(P (x) ⊃ P (f(x)))∧(∀xy)(P (x)∧P (y) ⊃ P (g(x, y))).
(2)

The conjecture that everything satisfying P is generated from a, b and c

by repeated application of the functions f and g is expressed by the sentence
schema

Φ(a) ∧Φ(b) ∧ Φ(c) ∧ (∀x)(Φ(x) ⊃ Φ(f(x)))
∧(∀xy)(Φ(x) ∧ Φ(y) ⊃ Φ(g(x, y))) ⊃ (∀x)(P (x) ⊃ Φ(x)),

(3)

where Φ is a free predicate variable for which any predicate may be substi-
tuted.

It is only a conjecture, because there might be an object d such that P (d)
which is not generated in this way. (3) is one way of writing the circum-

scription of (2). The heuristics of circumscription—when one can plausibly
conjecture that the objects generated in known ways are all there are—are
completely unstudied.

Circumscription is not deduction in disguise, because every form of de-
duction has two properties that circumscription lacks—transitivity and what
we may call monotonicity. Transitivity says that if p ` r and r ` s, then
p ` s. Monotonicity says that if A ` p (where A is a set of sentences) and
A ⊂ B, then B ` p for deduction. Intuitively, circumscription should not be
monotonic, since it is the conjecture that the ways we know of generating
P ’s are all there are. An enlarged set B of sentences may contain a new way
of generating P ’s.

If we use second order logic or the language of set theory, then circum-
scription can be expressed as a sentence rather than as a schema. In set
theory it becomes.

(∀Φ)(a ∈ Φ ∧b ∈ Φ ∧ c ∈ Φ ∧ (∀x)(x ∈ Φ ⊃ f(x) ∈ Φ)
∧(∀xy)(x ∈ Φ ∧ y ∈ Φ ⊃ g(x, y) ∈ Φ)) ⊃ P ⊂ Φ),

(4)
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but then we will still use the comprehension schema to form the set to be
substituted for the set variable Φ.

The axiom schema of induction in arithmetic is the result of applying
circumscription to the constant 0 and the successor operation.

There is a way of applying circumscription to an arbitrary sentence of
predicate calculus. Let p be such a sentence and let Φ be a predicate symbol.
The relativization of p with respect to Φ (written pΦ) is defined (as in some
logic texts) as the sentence that results from replacing every quantification
(∀x)E that occurs in p by (∀x)(Φ(x) ⊃ E) and every quantification (∃x)E
that occurs in p by (∃x)(Φ(x) ∧ E). The circumscription of p is then the
sentence

pΦ ⊃ (∀x)(P (x) ⊃ Φ(x)). (5)

This form is correct only if neither constants nor function symbols occur in p.
If they do, it is necessary to conjoin Φ(c) for each constant c and (∀x)(Φ(x) ⊃
Φ(f(x))) for each single argument function symbol f to the premiss of (5).
Corresponding sentences must be conjoined if there are function symbols of
two or more arguments. The intuitive meaning of (5) is that the only objects
satisfying P that exist are those that the sentence p forces to exist.

Applying the circumscription schema requires inventing a suitable pred-
icate to substitute for the symbol Φ (inventing a suitable set in the set-
theoretic formulation). In this it resembles mathematical induction; in order
to get the conclusion, we must invent a predicate for which the premise is
true.

There is also a semantic way of looking at applying circumscription.
Namely, a sentence that can be proved from a sentence p by circumscrip-
tion is true in all minimal models of p, where a deduction from p is true in
all models of p. Minimality is defined with respect to a containment relation
≤ . We write that M1 ≤ M2 if every element of the domain of M1 is a
member of the domain of M2 and on the common members all predicates
have the same truth value. It is not always true that a sentence true in
all minimal models can be proved by circumscription. Indeed the minimal
model of Peano’s axioms is the standard model of arithmetic, and Gödel’s
theorem is the assertion that not all true sentences are theorems. Minimal
models don’t always exist, and when they exist, they aren’t always unique.

(McCarthy 1977) treats circumscription in more detail.
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4 CONCEPTS AS OBJECTS

We shall begin by discussing how to express such facts as “Pat knows the

combination of the safe”, although the idea of treating a concept as an object
has application beyond the discussion of knowledge.

We shall use the symbol safe1 for the safe, and combination(s) is our
notation for the combination of an arbitrary safe s. We aren’t much interested
in the domain of combinations, and we shall take them to be strings of digits
with dashes in the right place, and, since a combination is a string, we will
write it in quotes. Thus we can write

combination(safe1) =′′ 45-25-17′′ (6)

as a formalization of the English “The combination of the safe is 45-25-17”.
Let us suppose that the combination of safe2 is, co-incidentally, also 45-25-
17, so we can also write

combination(safe2) =′′ 45-25-17′′. (7)

Now we want to translate “Pat knows the combination of the safe”. If we
were to express it as

knows(pat, combination(safe1)), (8)

the inference rule that allows replacing a term by an equal term in first order
logic would let us conclude knows(pat,combination(safe2)), which mightn’t
be true.

This problem was already recognized in 1879 by Frege, the founder of
modern predicate logic, who distinguished between direct and indirect occur-
rences of expressions and would consider the occurrence of combination(safe1)
in (8) to be indirect and not subject to replacement of equals by equals. The
modern way of stating the problem is to call Patknows a referentially opaque
operator.

The way out of this difficulty currently most popular is to treat Patknows

as a modal operator. This involves changing the logic so that replacement
of an expression by an equal expression is not allowed in opaque contexts.
Knowledge is not the only operator that admits modal treatment. There
is also belief, wanting, and logical or physical necessity. For AI purposes,
we would need all the above modal operators and many more in the same
system. This would make the semantic discussion of the resulting modal logic
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extremely complex. For this reason, and because we want functions from
material objects to concepts of them, we have followed a different path—
introducing concepts as individual objects. This has not been popular in
philosophy, although I suppose no-one would doubt that it could be done.

Our approach is to introduce the symbol Safe1 as a name for the concept
of safe1 and the function Combination which takes a concept of a safe into
a concept of its combination. The second operand of the function knows is
now required to be a concept, and we can write

knows(pat, Combination(Safe1))

to assert that Pat knows the combination of safe1. The previous trouble is
avoided so long as we can assert

Combination(Safe1) 6= Combination(Safe2),

which is quite reasonable, since we do not consider the concept of the combi-
nation of safe1 to be the same as the concept of the combination of safe2,
even if the combinations themselves are the same.

We write
denotes(Safe1, safe1)

and say that safe1 is the denotation of Safe1. We can say that Pegasus
doesn’t exist by writing

¬(∃x)(denotes(Pegasus, x))

still admitting Pegasus as a perfectly good concept. If we only admit con-
cepts with denotations (or admit partial functions into our system), we can
regard denotation as a function from concepts to objects—including other
concepts. We can then write

safe1 = den(Safe1).

The functions combination and Combination are related in a way that
we may call extensional, namely

(∀S)(combination(den(S)) = den(Combination(S)),

and we can also write this relation in terms of Combination alone as
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(∀S1S2)(den(S1) = den(S2)
⊃ den(Combination(S1)) = den(Combination(S2))),

(9)

or, in terms of the denotation predicate,

(∀S1S2sc)( denotes(S1, s) ∧ denotes(S2, s)
∧denotes(Combination(S1), c) ⊃ denotes(Combination(S2), c)).

(10)
It is precisely this property of extensionality that the above-mentioned knows

predicate lacks in its second argument; it is extensional in its first argument.
Suppose we now want to say “Pat knows that Mike knows the combina-

tion of safe1”. We cannot use knows(mike, Combination(Safe1)) as an
operand of another knows function for two reasons. First, the value of
knows(person, Concept) is a truth value, and there are only two truth values,
so we would either have Pat knowing all true statements or none. Second,
English treats knowledge of propositions differently from the way it treats
knowledge of the value of a term. To know a proposition is to know that
it is true, whereas the analog of knowing a combination would be knowing
whether the proposition is true.

We solve the first problem by introducing a new knowledge function

Knows(Person, Concept).

Knows(Mike, Combination(Safe1)) is not a truth value but a proposition,
and there can be distinct true propositions. We now need a predicate
true(proposition), so we can assert

true(Knows(Mike, Combination(Safe1)))

which is equivalent to our old-style assertion

knows(mike, Combination(Safe1)).

We now write

true(Knows(Pat,Knows(Mike, Combination(Safe1))))

to assert that Pat knows whether Mike knows the combination of safe1. We
define
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(∀Person, Proposition)(K(Person, Proposition)
= true(Proposition)andKnows(Person, Proposition)),

(11)
which forms the proposition that a person knows a proposition from the truth
of the proposition and that he knows whether the proposition holds. Note
that it is necessary to have new connectives to combine propositions and that
an equality sign rather than an equivalence sign is used. As far as our first
order logic is concerned, (11) is an assertion of the equality of two terms.
These matters are discussed thoroughly in (McCarthy 1979b).

While a concept denotes at most one object, the same object can be
denoted by many concepts. Nevertheless, there are often useful functions
from objects to concepts that denote them. Numbers may conveniently be
regarded has having standard concepts, and an object may have a distin-
guished concept relative to a particular person. (McCarthy 1977b) illustrates
the use of functions from objects to concepts in formalizing such chestnuts
as Russell’s, “I thought your yacht was longer than it is”.

The most immediate AI problem that requires concepts for its successful
formalism may be the relation between knowledge and ability. We would like
to connect Mike’s ability to open safe1 with his knowledge of the combination.
The proper formalization of the notion of can that involves knowledge rather
than just physical possibility hasn’t been done yet. Moore (1977) discusses
the relation between knowledge and action from a similar point of view, and
(McCarthy 1977b) contains some ideas about this.

There are obviously some esthetic disadvantages to a theory that has both
mike and Mike. Moreover, natural language doesn’t make such distinctions
in its vocabulary, but in rather roundabout ways when necessary. Perhaps
we could manage with just Mike (the concept), since the denotation func-
tion will be available for referring to mike (the person himself). It makes
some sentences longer, and we have to use an equivalence relation which we
may call eqdenot and say “MikeeqdenotBrother(Mary)” rather than write
“mike = brother(mary)”, reserving the equality sign for equal concepts.
Since many AI programs don’t make much use of replacement of equals by
equals, their notation may admit either interpretation, i.e., the formulas may
stand for either objects or concepts. The biggest objection is that the se-
mantics of reasoning about objects is more complicated if one refers to them
only via concepts.
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I believe that circumscription will turn out to be the key to inferring
non-knowledge. Unfortunately, an adequate formalism has not yet been de-
veloped, so we can only give some ideas of why establishing non-knowledge
is important for AI and how circumscription can contribute to it.

If the robot can reason that it cannot open safe1, because it doesn’t know
the combination, it can decide that its next task is to find the combination.
However, if it has merely failed to determine the combination by reasoning,
more thinking might solve the problem. If it can safely conclude that the
combination cannot be determined by reasoning, it can look for the informa-
tion externally.

As another example, suppose someone asks you whether the President is
standing, sitting or lying down at the moment you read the paper. Normally
you will answer that you don’t know and will not respond to a suggestion
that you think harder. You conclude that no matter how hard you think,
the information isn’t to be found. If you really want to know, you must look
for an external source of information. How do you know you can’t solve the
problem? The intuitive answer is that any answer is consistent with your
other knowledge. However, you certainly don’t construct a model of all your
beliefs to establish this. Since you undoubtedly have some contradictory
beliefs somewhere, you can’t construct the required models anyway.

The process has two steps. The first is deciding what knowledge is rel-
evant. This is a conjectural process, so its outcome is not guaranteed to
be correct. It might be carried out by some kind of keyword retrieval from
property lists, but there should be a less arbitrary method.

The second process uses the set of “relevant” sentences found by the first
process and constructs models or circumscription predicates that allow for
both outcomes if what is to be shown unknown is a proposition. If what is
to be shown unknown has many possible values like a safe combination, then
something more sophisticated is necessary. A parameter called the value of
the combination is introduced, and a “model” or circumscription predicate
is found in which this parameter occurs free. We used quotes, because a one
parameter family of models is found rather than a single model.

We conclude with just one example of a circumscription schema dealing
with knowledge. It is formalization of the assertion that all Mike knows is a
consequence of propositions P0 and Q0.

Φ(P0) ∧ Φ(Q0) ∧ (∀PQ)(Φ(P ) ∧ Φ(PimpliesQ) ⊃ Φ(Q))

⊃ (∀P )(knows(Mike, P ) ⊃ Φ(P )).
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5 PHILOSOPHICAL NOTES

Philosophy has a more direct relation to artificial intelligence than it has to
other sciences. Both subjects require the formalization of common sense
knowledge and repair of its deficiencies. Since a robot with general in-
telligence requires some general view of the world, deficiencies in the pro-
grammers’ introspection of their own world-views can result in operational
weaknesses in the program. Thus many programs, including Winograd’s
SHRDLU, regard the history of their world as a sequence of situations each
of which is produced by an event occurring in a previous situation of the
sequence. To handle concurrent events, such programs must be rebuilt and
not just provided with more facts.

This section is organized as a collection of disconnected remarks some
of which have a direct technical character, while others concern the general
structure of knowledge of the world. Some of them simply give sophisticated
justifications for some things that programmers are inclined to do anyway,
so some people may regard them as superfluous.

1. Building a view of the world into the structure of a program does not
in itself give the program the ability to state the view explicitly. Thus, none
of the programs that presuppose history as a sequence of situations can make
the assertion “History is a sequence of situations”. Indeed, for a human to
make his presuppositions explicit is often beyond his individual capabilities,
and the sciences of psychology and philosophy still have unsolved problems
in doing so.

2. Common sense requires scientific formulation. Both AI and philosophy
require it, and philosophy might even be regarded as an attempt to make
common sense into a science.

3. AI and philosophy both suffer from the following dilemma. Both need
precise formalizations, but the fundamental structure of the world has not
yet been discovered, so imprecise and even inconsistent formulations need
to be used. If the imprecision merely concerned the values to be given to
numerical constants, there wouldn’t be great difficulty, but there is a need to
use theories which are grossly wrong in general within domains where they
are valid. The above-mentioned history-as-a-sequence-of-situations is such
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a theory. The sense in which this theory is an approximation to a more
sophisticated theory hasn’t been examined.

4. (McCarthy 1979a) discusses the need to use concepts that are mean-
ingful only in an approximate theory. Relative to a Cartesian product co-
ordinatization of situations, counterfactual sentences of the form “If co-

ordinate x had the value c and the other co-ordinates retained their values,

then p would be true” can be meaningful. Thus, within a suitable theory,
the assertion “The skier wouldn’t have fallen if he had put his weight on his

downhill ski” is meaningful and perhaps true, but it is hard to give it mean-
ing as a statement about the world of atoms and wave functions, because
it is not clear what different wave functions are specified by “if he had put

his weight on his downhill ski”. We need an AI formalism that can use such
statements but can go beyond them to the next level of approximation when
possible and necessary. I now think that circumscription is a tool that will
allow drawing conclusions from a given approximate theory for use in given
circumstances without a total commitment to the theory.

5. One can imagine constructing programs either as empiricists or as
realists. An empiricist program would build only theories connecting its
sense data with its actions. A realist program would try to find facts about
a world that existed independently of the program and would not suppose
that the only reality is what might somehow interact with the program.

I favor building realist programs with the following example in mind. It
has been shown that the Life two dimensional cellular automaton is universal
as a computer and as a constructor. Therefore, there could be configurations
of Life cells acting as self-reproducing computers with sensory and motor
capabilities with respect to the rest of the Life plane. The program in such
a computer could study the physics of its world by making theories and
experiments to test them and might eventually come up with the theory
that its fundamental physics is that of the Life cellular automaton.

We can test our theories of epistemology and common sense reasoning
by asking if they would permit the Life-world computer to conclude, on the
basis of experiments, that its physics was that of Life. If our epistemology
isn’t adequate for such a simple universe, it surely isn’t good enough for our
much more complicated universe. This example is one of the reasons for
preferring to build realist rather than empiricist programs. The empiricist
program, if it was smart enough, would only end up with a statement that
“my experiences are best organized as if there were a Life cellular automaton
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and events isomorphic to my thoughts occurred in a certain subconfiguration

of it”. Thus it would get a result equivalent to that of the realist program
but more complicated and with less certainty.

More generally, we can imagine a metaphilosophy that has the same re-
lation to philosophy that metamathematics has to mathematics. Metaphi-
losophy would study mathematical systems consisting of an “epistemologist”
seeking knowledge in accordance with the epistemology to be tested and in-
teracting with a “world”. It would study what information about the world
a given philosophy would obtain. This would depend also on the structure
of the world and the “epistemologist’s” opportunities to interact.

AI could benefit from building some very simple systems of this kind, and
so might philosophy.
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