
Theory
• Theoretical foundations are completely specifi ed.
• The algorithm is proved sound and complete.
• Theoretical reasoning complexity specifi ed. (See annotations on the example.)
• Remaining open question: Can resolution p-simulate reasoning with labelled formulas?

Implementation and Experimentation
An implementation of a model fi nder for labelled formulas is in progress.
☛ Goal: Provide experimental evidence for the practical usefulness/superiority of our approach.

Two classes of benchmark problems available:
• randomly-generated formulas (translations of QBF formulas of varying hardness)

are challenging, but often “artifi cially” so.
Some families of hard random formulas may become trivial if certain optimization techniques are enabled.
Optimizations can be tailoured (to some extent) to the problem class.

• problems arising from real-world applications
 much more interesting.

Nowadays, problem size is no longer an issue. (Large problems available.)
However, they are few in number and often contain extra constructs used in DL.
“CPU-time performance” often determined by pragmatic choices (compiler and hardware optimization, memory
caching), as only very large problems are challenging.

Global axioms
• Global axioms are standard in DL knowledge bases.

A Kripke model satisfi es a global axiom ϕ, if K,w⎮=ϕ for all worlds w.
• Expressible by a slight extension of our formalism, as ∗∗ ϕ.
• Problem: Need to use loops to ensure fi niteness.

What is the equivalent of loops in models of labelled formulas?
☛ equivalence classes of labels.

Absorption [Horrocks & Tobies 2000] is a technique for Description Logic with axioms.
• Our formalism is an alternative to absorption.
• But, can absorption be adapted to to formulas without axioms?

Other optimizations
• Dependency-directed Backtracking (Backjumping) is already built into the algorithm.
• We can still do model caching, but is it useful?
• Exploiting variable and role invariances?

Problem Description

References

Status of Work

Future Work

Effi cient Reasoning with Labelled Formula Translations of Km

Existing Approaches

Solution
Foundations

Modal Logic Km: Propositional logic augmented with unary operators for possibility (〈R
i
〉), and necessity ([R

i
]).

Decidable, PSPACE-complete (with EXP-time complete extensions, see Future Work).
Equivalent to Description Logic ALC, which is:
• Applied in real-world knowledge bases, e.g. GALEN [Rector, Nowlan, & Glowinski 1993].
• Foundation for semantic web representation Language: DAML+OIL [Klein et al. 2003]
• Suitable for a wide range of modelling and verifi cation tasks (UML)
• Fast reasoners exist [Haarslev & Möller 2003]: FaCT, DLP, RACER
• Experimental prototypes: ModProf[Happe 2001a], *SAT[Giunchiglia & Tacchella, 2000]
Semantic of Km: given by means of Kripke models (see Example to the right).
Most implementations use a refi nement of the tableau method.

Why Reasoning is intractable
(1) Diamond operators can result in exponentially growing numbers of worlds:

Φ
1
 = {〈R

i
〉p

1
,〈R

i
〉¬p

1
,[R

i
]〈R

i
〉p

2
,[R

i
]〈R

i
〉¬p

2
,[R

i
][R

i
]〈R

i
〉p

3
,[R

i
]

[R

i
]〈R

i
〉¬p

3
,...}

(2) Disjunctions within necessities make matters much worse:

Φ
2
 = Φ

1
 ∪ {[R

i
]

...[R

i
] p

1
∨p

2
∨p

3
∨...}

☛ involves branching over exponentially many worlds.
This has been identifi ed as the major bottleneck in real-world applications as well [Horrocks & Tobies 2000].

1. Caching and Model Merging [Horrocks 2003]
Assume a set of formulas Φ has been previously encountered and
found satisfi able, and a new set Ψ ⊆ Φ is encountered.
Then Ψ can be declared satisfi able without any further inspection.
Conversely, if Φ has been previously found unsatisfi able, and Φ ⊆ Ψ, then Ψ can be declared unsatisfi able without
any further inspection.
☛ An effi cient implementation of this is [Giunchiglia & Tacchella, 2000]. A more elaborate version of caching has been

presented in [Happe 2001b].
Conceptually, caching produces non-tree Kripke models by grouping nodes together.

Model Merging also utilizes caching:
• Assume a node has two associated formulas 〈R〉ϕ and 〈R〉ψ, and

models for both ϕ and ψ exist, and their variable assignments are compatible.
Then the worlds for ϕ and ψ can be merged into one successor world.

Caching and model merging fail when formulas are mutually inconsistent, as in the examples Φ
1
,Φ

2
 above.

2. Labelling [Beckert & Goré 2001]
While branching on a formula, assign labels to the subformula branched upon, capturing the modalities. Example:

[R
i
][R

j
]〈R

k
〉p → 1.i.x.j.y.k.c.p.

Ensures completeness by duplicating ∨-formulas, and by classifying variables as universal or free.
Decides satisfi ability, but does not return satisfying models.
Our formalism is based on these ideas, but is more powerful and returns satisfying models.

3. Functional Translation [Ohlbach et al. 2001]
Formulas get translated into a decidable fragment of FOL. The translated formula is solved using a fi rst-order theo-
rem prover. Example:

〈R
i
〉p

1
∧ [R

i
]〈R

i
〉p

2
∧ [R

i
](¬p

1
∨ [R

i
] ¬p

2
) → p

1
(c

i
), p

2
(x

i
,d

i
), ¬p

1
(y

i
)

∨ ¬p

2
(y

i
,z

i
)

Relies on the effi ciency of FOL Provers; no specifi c optimization for modal formulas.
Todayʼs most efficient FOL provers use resolution, not tableaux.
Dead-end predicates needed to cope with the trivial solution of [R

i
]⊥.

Overall effi ciency comparable to optimized tableau-based provers.

4. Model Evolution Calculus [Baumgartner & Tinelli 2003]
A similar method to Labelled Formulas, but for FOL.
Provides a mechanism similar to labels with exceptions, but less powerful.
Thus, Functional Translation plus Model Evolution Calculus cannot simulate our approach.

[Baumgartner & Tinelli 2003] Baumgartner, P., and Tinelli, C. The model evolution calculus. In Baader, F., ed., Proceedings of the 19th Interna-
tional Conference on Automated Deduction, CADE-19 (Miami, Florida, USA), number 2741 in Lecture Notes in Artifi cial Intelligence, 350–364.
Springer. 2003.

[Beckert & Goré 2001] Beckert, B., and Goré, R. Free variable tableaux for propositional modal logics. Studia Logica 69:59–96. 2001.

[Giunchiglia & Tacchella, 2000] E. Giunchiglia and A. Tacchella. A subset-matching size-bounded cache for satisfi ability of modal logics. In Pro-
ceedings International Conference Tableaux 2000, pages 237–251. Springer. 2000.

[Haarslev & Möller 2003] Haarslev, V., and Möller, R. Description logic systems. In Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds., The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press. 427–
449. 2003.

[Happe 2001a] Happe, J. The ModProf theorem prover. In Proceedings of the International Joint Conference on Automated Reasoning (IJCAR
2001), number 2083 in Lecture Notes in Artifi cial Intelligence, 459–463. Springer. 2001a.

[Happe 2001b] Happe, J. A subsumption-aided caching technique. In Issues in the Design and Experimental Evaluation of Systems for Modal
and Temporal Logics (IJCAR 2001 Workshop), Technical Report DII 14/01, 49–57. Dipartimento di Ingegneria dellʼInformazione, Unversitʼa
degli Studi di Siena, Siena, Italy. 2001b.

[Horrocks & Tobies 2000] Horrocks, I., and Tobies, S. Reasoning with axioms: Theory and practice. In Proc. of the 7th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR 2000), 285–296. 2000.

[Horrocks 2003] Horrocks, I. Implementation and Optimization Techniques. In Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; Patel-
Schneider, P. F., eds., The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press. 306–346.
2003.

[Klein et al. 2003] Klein, M.; Broekstra, J.; Fensel, D.; van Harmelen, F.; and Horrocks, I. Ontologies and schema languages on the web. In
Fensel, D.; Hendler, J.; Lieberman, H.; and Wahlster, W., eds., Spinning the Semantic Web: Bringing the World Wide Web to its full potential.
MIT Press. 2003.

[Ohlbach et al. 2001] Ohlbach, H.; Nonnengart, A.; de Rijke, M.; and Gabbay, D. Encoding two-valued nonclassical logics into classical logic.
In Robinson, A., and Voronkov, A., eds., Handbook of Automated Reasoning, volume II. Elsevier Science. chapter 21, 1403–1486. 2001.

[Rector, Nowlan, & Glowinski 1993] Rector, A.; Nowlan, W.; and Glowinski, A. Goals for concept representation in the Galen project. In 17th
annual Symposium on Computer Applications in Medical Care, Washington, USA, SCAMC 93, 414–418. 1993.

〈R
i
〉ϕ,〈R

i
〉ψ

ϕ

 ψ

ϕ,ψ

〈R
i
〉ϕ,〈R

i
〉ψ

Φ

 Ψ

...

...

Φ = {[R
1
] (p

1
∨ q

1
), [R

1
] (p

2
∨ q

2
), 〈R

1
〉(¬p

1
∧ ¬q

2
), 〈R

1
〉(¬q

1
∧ ¬p

2
)}

∗
1
 (p

1
∨ q

1
), ∗

1
 (p

2
∨ q

2
), c

1
 (¬p

1
∧ ¬q

2
), c’

1
(¬q

1
∧ ¬p

2
)

original Formula

labelled Form

∗
1
 (p

1
∨ q

1
), ∗

1
 (p

2
∨ q

2
), c

1
 ¬p

1
, c

1
 ¬q

2
, c’

1
¬q

1
, c’

1
 ¬p

2

labelled Form (And/Or NF)

(∗
1
,{c

1
}) p

1
, c

1
 q

1
, (∗

1
,{c’

1
}) p

2
, c’

1
 q

2
, c

1
 ¬p

1
, c

1
 ¬q

2
, c’

1
 ¬q

1
, c’

1
 ¬p

2

labelled Model (assertions)

Kripke Model

Φ
world ε

p
2
,q

1
, ¬p

1
,¬q

2

world c
1

world c’
1

R
1

R
1

p
1
,q

2
, ¬p

2
,¬q

1

Complexity:
linear

Complexity:
length∗depth

Complexity:
PSPACE-complete (for sat.)
exponential (for models)

Complexity:
co-NP complete (for consistency)
exponential (for models)

Labels are strings of constants c
i
,c’

i
 ,... from countable domains D

i
, and anonymous vari-

ables (wildcards) ∗
i
, for each relation R

i
.

The empty label is denoted ε.
Labels replace chains of modal operators in front of a formula and any of its subformu-
las as follows:
• [R

i
] is replaced by ∗

i
.

• Each 〈R
i
〉 is replaced by a new constant from D

i
.

A wildcard ∗
i
 can be instantiated by any constant from domain D

i
. or by itself.

Intuitively, a label with wildcards represents the set of all its ground instances within a
given context.
In this example: ∗

i
 represents {c

i
, c’

i
}.

The mgu (σ,σ’) of two labels σ and σ’ is the most general common instance of σ and σ’.

Branch on ∗
1
 (p

1
∨ q

1
): ∗

1
p

1

→ Clashes with: c
1
 ¬p

1

Create exception: (∗
1
,{c

R
}) p

1

Re-branch on c
1
 (p

1
∨ q

1
): c

1
q

1

Branch on ∗
1
 (p

2
∨ q

2
): ∗

1
p

2

→ Clashes with: c’
1
 ¬p

2

Create exception: (∗
1
,{c’

1
}) p

2

Re-branch on c’
1
 (p

2
∨ q

2
): c’

1
q

2

In labelled formulas, labels distribute over conjunctions.
☛ Thus, c

i
 (¬p

1
∧ ¬q

2
) is equivalent to c

i
 ¬p

1
 ∧ c

i
 ¬q

2
.

Notice: In Km, this is not true: 〈R
i
〉(¬p

1
∧ ¬q

2
) and 〈R

i
〉¬p

1
∧ 〈R

i
〉¬q

2
 are not equivalent.

☛ A formula can be converted to And/Or Normal Form,by:
• pulling labels inside conjunctions
• fl attening nested conjunctions and disjunctions.

Two labelled literals form a clash, if their labels have common ground instances (clash
witnesses).
Likewise, a formula σ ⊥ forms a clash, if σ has a ground instance.
Clashes indicate elementary inconsistencies.

Just as in the tableau method, we seek to eliminate disjunctions by branching.
However, instead of ground labels, we branch universally over the label which precedes
the disjunction (here: ∗

i
).

(This would be unsound, were it not for our method of repairing clashes, see below.)

A label with exceptions is denoted as (σ,Σ), where σ is a simple label, and Σ is a set of
instances of σ (exceptions).
Intuitively, (σ,Σ) represents the set of all ground instances of σ which are not (also) in-
stances of any exception in Σ.
Notice: (∗

i
,{c

i
}) p

1
 and c

i
 ¬p

1
 do not form a clash. Hence, the former inconsistency has

been repaired.

An assertion is an atomic formula (p,¬p, T, or ⊥) with a label (possibly with exceptions).
For a set M of assertions and a label σ, we defi ne M⎮

σ
 = {σ’’ a⎮σ’σ’’ a ∈ M, and σ in-

stantiates σ’}.
A set M of assertions is a model of a formula F, if:
• M is clash-free.
• M satisfi es F (M⎮= F), defi ned recursively as:

M⎮= T, M⎮= ⊥.
M⎮= p (M⎮= ¬p), if ε p ∈ M (ε ¬p ∈ M).
M⎮= F∧G, if M⎮= F and M⎮= G.
M⎮= F∨G, if M⎮= F or M⎮= G.
M⎮= σ F, if σ exists in M (as a prefi x of some label in M), and for a subset M’ of M,
M'⎮

σ
⎮= F, and for all exceptions σ’ in any of the labels in M’, (σ,σ’) does not exist, or

M⎮= (σ,σ’) F.

How to convert a consistent set M of assertions into a Kripke model K = (W,R,V):
• Defi ne W as the set of all ground instances within the context of M.
• Defi ne σ R

i
 σc

i
, whenever σ and σc

i
 are in M, and c

i
 ∈ D

i

• Defi ne σ ∈ V(p), iff σ instantiates a label σ
0
 so that σ

0
p ∈ M .

Jens Happe, School of Computing Science, Simon Fraser University
e-mail: jhappe@cs.sfu.ca

