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Introduction
Taxonomical concept hierarchies are an important part of RDF and
OWL ontologies used on the semantic web and other hierarchies, 
e.g., spatial hierarchies.

For example, subsumption hierarchies based on the subClassOf or 
part Of properties are widely used.  
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Problem Description

How to represent and exploit taxonomic 
hierarchies in probabilistic reasoning

We look at two related problems in Bayesian networks 
that have both simple and hierarchical variables

Compact representation for the conditional probabilities

How to exploit this representation in probabilistic  
reasoning for computational gain 
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LOCATION and LIVINGTHINGS are hierarchical variables 

FLYING, LAYEGGS, and SEASON are simple variables



Related Work

(Pearl 1988, Poh and Fehling  1993, Heckerman 1990) 
combine the Belief network and taxonomic hierarchies. In 
these works the Bayesian network is restricted to a diagnostic 
network form.

In more recent work Koller and Pfeffer(1998) combine the 
frame representation systems and Bayesian networks for 
representing complex structured domain. Their framework 
uses isA, and partOf hierarchy in an object oriented way.  

The work by Koller and Pfeffer is different than ours, they are 
looking on different aspect of the problem, concentrating 
multiple objects. However we are considering when the 
domain of a random variable is taxonomically structured. 



Conditional Probabilities of Bayesian 
Networks that have Hierarchical Variables

To represent the CPTs compactly we utilise the structure 
provided by the abstraction hierarchies

There are two main issues:

specifying the probability  for hierarchical variables

specifying how variables are conditioned on  hierarchical   
variables 



Probability for Hierarchical Variable
• The  probability of a hierarchical variable can be specify in a top-down     
manner.

• Each internal class specify a probability distribution over its immediate 
subclasses conditioned on parents of the hierarchical variable.

e.g.,   P( animal | livingthing) = 0.4

P( plant | livingthing) = 0.6

In this representation  the probability of any class can be computed in a 
recursive manner as follows:

P(Cj) = P(Cj|Ck) P(Ck), where Ck is the superclass of Cj

The root class has probability 1 as it represents the set of all values.

P(sparrow) = P(sparrow|bird) × P(bird|animal) × P(animal|livingthing) 



Hierarchical Variable is the parent of 
a simple variable

LIVINGTHINGWe define the default distribution over FLYING for few 
classes  in the hierarchy of living things.
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e.g.,  to define P(FLYING|LIVINGTHINGS) we 
need to define only 5 distributions:
Pd(FLYING|livingthings), Pd(FLYING|insect)

Pd(FLYING|bird), Pd(FLYING|bat)

Pd(FLYING|penguin)

• We use inheritance

then P(flying|sparrow) = Pd(flying|bird)

P(flying|bird) = P(sparrow|bird)×Pd(flying|bird) +
P(penguin|bird)×Pd(flying|penguin)



Multiple Inheritance
Multiple inheritance can arise when a variable has more than 
one   hierarchical parents
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Example:

Suppose  to specify P(F|H1ΛH2 ) we have defined default distributions:

Pd(F|h23Λh12) and Pd(F|h22Λh14)

then P(F|h23Λh14) can be inherited either from 

Pd(F|h23Λh12) or  Pd(F|h22Λh14)

We explicitly disallow  multiple inheritance

The user need to provide distribution Pd(F|h23Λh14)  



Exploiting Structure Provided by 
Abstraction Hierarchies

Idea: given some evidence and a query construct a flat Bayesian      
Network by abstracting the hierarchical variables to simple variables

Abstraction of Hierarchical Variable H

An abstract value of H is either

• a  class in the tree hierarchy

• a non-empty set of classes that are not ancestors of one another

An abstraction level (LH) of H is a set of abstract values of H that are 
mutually exclusive and exhaustive.

An abstraction of H is a simple variable Ha with domain  LH



Construction of Flat Bayesian Network
The algorithm consist of two phases:

Phase1: Abstract
• we traverse the network from leafs upwards 

• we prune a variable that isn’t queried or observed and doesn’t have any children

• compute the abstraction Ha for each relevant hierarchical variable H

find the relevant exceptional classes of H for each child of H
The domain of Ha is the set of abstract values for each exceptional class

Phase 2: Construct Tables

The algorithm constructs the CPT for the following two cases:

Xa is abstracted variable

Xa is not abstracted variable but some of its parents are abstracted
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query P(H = h10|A = a1ΛHC = hc3)

F2 is pruned

hierarchical variables  H, HP, and HC are abstracted



Abstraction of HC (Observed variable, with no children)

We observed HC = hc3

All the superclasses of hc3 are also true. 

Any class that is neither an ancestor or descendant of 
hc3 is false.

We can abstract HC by a simple variable HCa 

Val(HCa) = {hc3,hc Λ~hc3}

Computation of P(HCa = hc3|Ha) :

P(HCa = hc3|Ha) = Pd(hc3|hc1 ΛHa ) × Pd(hc1|hc ΛHa )

We can compute the right hand side after abstracting H 



Abstraction of H
The classes that we need are 

those that are exceptional for F1 and  HCa  (h, h1, h3, h7)

necessary to answer the query (h110)

We can abstract H by simple variable Ha that has domain
Val(Ha) = {h3, h7, h10, h1 Λ~h3 Λ~h7 Λ~h10, h Λ~h1}

values h3 and h7 are there because we get evidence for these values 
from HCa and F1

value h10 is the value we will eventually query

The last two values cover the different cases that have the same default 
probabilities

The domain of Ha is a minimal set of values that preserve the 
distinctions needed and is adequate to answer the query



Conditional Probability Tables P(F1|Ha)

Pd(F1|h1)

Pd(F1|h7)

Pd(F1|h1)

Pd(F1|h1)

Pd(F1|h)

Ha

h3

h7

h10

h1Λ~h3 Λ~h7Λ~h10

hΛ~h1

P(F1|Ha)

Ha

h3

h7

h10

h1 Λ~h3Λ~h7Λ~h10

h Λ~h1

P(HCa =hc3|Ha)

Pd(hc3|hc1Λh3) Pd(hc1|hc Λh3)

Pd(hc3|hc1Λh3) Pd(hc1|hc Λh3)

Pd(hc3|hc1Λh3) Pd(hc1|hcΛh3)

Pd(hc3|hc1  Λh3) Pd(hc1|hcΛh3)

Pd(hc3|hc1  Λh3) Pd(hc1|hcΛh3)

We create the values of Ha such 
that we can have simple CPTs 
for its children  

P(HCa =hc3|Ha)



Computational Complexity

The size of the flat Bayesian network is independent of the 
size of the hierarchies.

It depends on how many classes in the hierarchy are exceptional 
with respect to their children that have observed descendants.

The running time to construct the flat Bayesian network 
depends on :

depth of the exceptional classes 

number of exceptional classes. 



Future Thesis Work

Evaluation of the proposed approach on some realistic data

What are the trade offs ?

Exploring the relationship with Context specific Independence
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