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Abstract

This paper presents a solution in a first-order monotonic logic to a simplified version of the Surprise
Birthday Present Problem, a challenge problem for the formal commonsense reasoning community. The
problem concerns two siblings who wish to surprise their sister with a present for her birthday: the aim
is to construct a theory that will support the desired inferences, not allow undesired inferences, and be
sufficiently elaboration tolerant to support reasoning about problem variations. The theory presented in this
paper includes the development of a possible-worlds analysis of the concept of surprise, and an extension
to previous work on multiple-agent planning to handle joint planning and actions. We show that this theory
can solve the original SBP as well as many of its variants.

1 Introduction

1.1 Problem Statement

This paper presents an initial solution in a first-order monotonic logic to a simplified version of the Surprise
Birthday Present Problem [5], one of a set of challenge problems for the formal commonsense reasoning
community. The problem concerns two siblings who wish to surprise their sister with a present for her
birthday. The aim is to construct a theory that will support the desired inferences, not allow undesired
inferences, and be sufficiently elaboration tolerant (as in [18]) to support reasoning about problem variations.

The problem is reproduced below, slightly condensed and paraphrased for the sake of brevity:

Alice and Bob want to surprise their sister Carol with a joint present for her birthday, two weeks from now.
They therefore go into a closed room to decide on the present and to plan how they will buy it.

The problem is to determine that their plan will work. Variants on the problem include predicting that the
plan will not work if Carol is also in the room; if the door is open and Carol is in the next room; if one of
them tells Carol; if they do not consult together; if they cannot agree on a present; or if they wait until after
Carol’s birthday; as well as to predict that the plan will still work if Alice and Bob discuss the plan during a
walk outside, or pass a hidden message, and whether they go together to buy the present or go separately.

The solution must satisfy the following constraints: first, the theory should not support the inference that
nothing happens except the events enumerated in the plan (and these events’ consequences); second, that the
theory should not support the inference that Carol knows nothing except for statements true in all possible
worlds.
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1.2 The Approach

The Surprise Birthday Present Problem (SBP) is one of a set of mid-sized challenge problems proposed for the
formal commonsense reasoning community.1 These problems are larger than toy commonsense problems
(Yale Shooting Problem [11], Suitcase Problem [16], Missionaries and Cannibals [18]) that have received
much attention from formal AI researchers, but much smaller than large-scale efforts to formalize substantial
chunks of commonsense knowledge, such as the HPKB [22] project. In contrast to toy problems, which
eviscerate most interesting details of commonsense reasoning, and large-scale efforts whose size necessitates
a shallow approach to formalizing knowledge, the aim is to construct a relatively deep formalization of the
mid-sized problem domain.

The aim of constructing these mid-sized formalizations is threefold, as discussed in [20]. First, the goal is
to create reusable core, reusable theories, or partial theories, of commonsense reasoning, as in [13] [12]. For
example, in this paper, we develop some core definitions of expectation and surprise. Second, extending
existing work into the mid-sized axiomatization tests the limits of existing theories: one either discovers that
an existing theory is too brittle to be expanded to the demands of the non-toy formalization, or one invents
methods to extend the existing theory. For example, this paper explores how the planning theory of [8] could
be extended to joint plans. Third, analyzing a mid-sized problem could result in discovering new general
representational issues and problems, which often would not be discovered when examining toy problems.
(Typically such problems, once discovered, can be recast into toy problems.)

Even mid-sized problems turn out to be quite complicated, and many simplifications are necessary for formal-
ization. (See, e.g., the simplifications used in [20], [26] for the formalization of the Egg Cracking Problem.)
The SBP, as Davis has pointed out, concerns a variety of domains, including time, space, physics, knowledge,
perception, naive psychology, multiple agents, and planning. Focusing on all these problems in depth would
necessitate a large-scale, rather than a mid-sized axiomatization. It is also may lie beyond the capabilities of
AI practitioners today. Each of these domains presents substantial challenges for formalization; moreover,
integrating formalizations of separate domains usually presents various difficulties [4].

Instead, we focus on just two issues: formalizing the concept of surprise, and formalizing some concepts
relating to joint plans. In this paper, we present preliminary work toward that goal. We first characterize
the concept of surprise: an agent is surprised by a fact being true or an event happening if he previously did
not expect it, but has subsequently found out about it. (This English paraphrase is a simplification, as we
discuss in Section 2, where we provide a more accurate definition.) We then investigate the circumstances in
which agents can successfully execute a joint plan. The formalization is an extension of the theory of [8], in
which plans consist of a single agent making a request to single or multiple agents, each acting alone. The
extension to scenarios in which multiple agents jointly form and execute plans presents several technical and
conceptual issues.

To show that Alice’s and Bob’s joint plan results in Carol being surprised, we must posit, first, that in the
starting situation, Carol has no expectation of receiving a gift on her birthday. We then specify the joint
plan to purchase the present and give it to Carol. We show that this plan will succeed in Carol receiving the
present. We furthermore show that Carol does not find out about the present during the execution of the plan.
This is sufficient to entail the conclusion that Carol is surprised when she receives her birthday present.

We do not focus on the issue of physical proximity as it relates to overhearing a discussion: we simply
introduce thewithin earshotfluent to mean that one agent is in earshot of another. We ignore the issue of
location entirely, not specifying that in order to give someone something or purchase something, one must be
at a particular location. We make this choice because adding axioms about location would at least double the
length of the already complex plan, and it seemed more productive to use the space to discuss other issues. It

1This set of problems can be found at http://www-formal.stanford.edu/leora/commonsense.
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is of course understood that in an extended version of this paper, we would include such fluents.

This means, of course, that there is a large chunk of the SBP that we are not analyzing, and some variants
that we cannot handle. However, what remains is still a very complex problem, as we demonstrate.

1.3 Logical Preliminaries

We will be using a sorted logic.A ranges over agents;S ranges over situations;T ranges over calendar-
clock-times (e.g., January 5, 2005, 21:41),E ranges over events,P ranges over plans,Q range over fluents,
andX ranges over objects. Other sorts will be introduced as needed. Variables are uppercase; constants are
lowercase. In all statements, variables are assumed to be universally quantified unless otherwise specified.

We will be using the situation-based temporal logic of [8]. Time branches forward, but not back. The forward-
branching structure represents the potential choices that agents can make; different choices correspond to
different paths through the structure. Situations are ordered by the< relation. Associated with each situation
is a calendar-clock-time, also ordered by the< relation.

Finite intervals are specified by their starting and ending situations. The predicateholdsrelates fluents and
situations:holds(S, Q)means that the fluentQ is true in the situationS. We extend the notation so thatholds
can be used over intervals:holds([S1,S2],Q)⇔∀S∈(S1,S2) holds[S,Q]

Events occur over intervals.occurs(S1,S2, e)means that eventE occurs over the interval[S1,S2].

2 Formalizing the concept of surprise

We formalize the concept of surprise as an unexpected event or fact. That is,A is surprised byQ at situation
S if prior to S, A did not expect thatQ would hold.

To formalize this concept, we must deal with two issues: First, formalizing the notion of expectation, and sec-
ond, extending previous work on the interaction between time and knowledge (as well as between time and
other knowledge-like operators), in the sense to be made precise below. Below, we discuss three knowledge-
like operators:Know, Believe, andBelieve-likely. Corresponding to these operators are three operators de-
scribing prediction:Know-future, Believe-future, andExpect.

Why the need for three epistemic/doxastic operators? First, we note that using only theKnowoperator limits
the kind of surprise that can be expressed. Consider that one may be surprised byQ because one had no
expectation thatQ; but one may also, and in a somewhat stronger sense, be surprised by because one had
the expectation that in fact¬Q would hold. (We may distinguish these types of surprise as, respectively,
weak surprise and strong surprise.) We can useKnow to express weak but not strong surprise. For it is not
possible forA to Knowthat¬Q will hold at some timeT, but forQ then to hold atT: knowledge implies truth.
Although weak surprise is a sufficient concept for many situations (such as the SBP), we prefer to develop a
theory that is capable of the fairly natural extension to the concept of strong surprise.

Second, the articulation and analysis of three separate concepts may help clear up a somewhat implicit muddle
in the distinction between the commonsense concepts of belief and knowledge. One generally distinguishes
between knowledge and belief by positing that knowledge, but not belief, implies truth2. However, there are
also accounts in which belief is assumed to have a lesser degree of doxastic commitment than knowledge.
That is, one is less sure of what one believes than of what one knows. The belief operator has different
properties under these two accounts. In the former, certain axioms hold, such as KB.3, the second principle

2In terms of characterization, one generally does notdefineknowledge as true belief; one may, for example, attempt to define
knowledge as justified true belief, as discussed in [10].
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of positive introspection for belief, of [3] (if an agent believes something, he believes that he knows it) that
do not hold in the latter; on the other hand, the latter concept is more suitable for theories of belief revision.

Indeed, for complex theories of multi-agent planning, all three concepts are important. If one agentA1
reasons about another agentA2’s plan, A1 must be able to distinguish between whatA2 knows to be true
and whatA2 believes to be true: ifA2’s beliefs are mistaken, A1 knows that A2’s plan may not succeed.
Likewise,A1 knows that ifA2 believes that something is likely, but not necessarily true,A2 may make some
contingency plan that would not arise ifA2believed something with certainty.

We therefore introduce three accessibility relationsK, B, andL, relating, respectively, knowledge-accessible
worlds, belief-accessible worlds, and likely-belief-accessible worlds. Intuitively:
K(A, S1, S2)holds if from whatA knows to be true,S2is indistinguishable fromS1;
B(A, S1, S2)holds if from whatA believes to be true,S2is indistinguishable fromS1;
L(A, S1, S2)holds if from whatA believes to be likely,S2is indistinguishable fromS1.

Definition 1 We then have the expected definitions:
holds(S1, Know(A,Q))⇔∀S2 K(A,S1,S2)⇒holds(S2, Q)
holds(S1, Believe(A,Q))⇔∀S2 B(A,S1,S2)⇒holds(S2, Q)
holds(S1, Believe-likely(A,Q))⇔∀S2 L(A,S1,S2)⇒holds(S2, Q)

As can be seen above, the definitions and axioms that we will have for knowledge, belief, and believing likely
are often very similar. In this paper, we will frequently group related definitions and axioms together, to save
space.

We specify that theK relation is reflexive and transitive, and that theB andL relations are symmetric and
transitive, yielding an S4 logic of knowledge and weak S5 logics for belief and likely belief. This gives the
usual axioms on epistemic and doxastic operators, as in [9].

The major differences between S4 and weak S5 are: (1) veridicality holds in S4 but not in weak S5; (2)
negative introspection holds in weak S5 but not in S4. Indeed, we wish veridicality to hold only forKnowbut
not for Believeor Believe-likely, since it is not the case that wheneverA believes or believes-likelyQ, thatQ
holds. Moreover, while negative introspection holds forBelieveandBelieve-likely, it doesn’t hold forKnow.
Consider the case whereA believesQ but doesn’t knowQ, becauseQ is in fact false.A does not know that
he doesn’t knowQ, indeed, he believes that he knowsQ.

Consequential closure holds in both S4 and weak S5 (and indeed, in any standard possible-worlds account of
modal operators). In particular, consequential closure hpolds forBelieves-likely. This is contrast to probab-
listic models of likely belief, in which consquential closure cannot in general hold. Assuming consequential
closure forBelieve-likelyhas the advantage of facilitating temporal reasoning, specifically reasoning about
causal chains and reasoning about the frame problem.

We further place the following restriction on these relations:

Axiom 1 {S2|L(A,S1,S2)} ⊆ {S2|B(A,S1,S2)} ⊆ {S2|K(A,S1,S2)}

To see thatL ⊆ B, note that the greater an agent’s degree of doxastic commitment, the fewer propositions to
which he commits; therefore, the greater the number of worlds that are accessible to him. To see thatB⊆ K,
note similarly that the truth requirement for knowledge, as opposed to belief, means that an agent can believe
more propositions than he knows; since he commits, belief-wise, to more propositions than he commits,
knowledge-wise, the set of knowledge-accessible worlds is larger than the set of belief accessible-worlds.

The subset relations on the accessibility relations correspond to the following axioms relating knowledge,
belief, and likely belief:

Axiom 2 holds(S, Know(A,Q))⇒holds(S, Believe(A,Q))
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Axiom 3 holds(S, Believe(A,Q))⇒holds(S, Believe-likely(A,Q))

For many purposes — and in particular, for formalizing the notion of surprise — it is necessary to reason
about the future. An agent may know that the fluentQ will hold at some future time; or believe thatQ
will hold; or believe that it is likely thatQ will hold. To formalize these concepts, we will need to reason
about the ways in which knowledge (resp. belief or believing likely) and time interact. Traditionally, theories
of knowledge and time have formalized this interaction using some sort ofResultsfunction which maps a
situation and the action performed in that situation to the situation resulting from the performance of that
action [19]. This approach is useful for reasoning when one knows all the actions that one will perform,
or at least a partial characterization of such actions [24]. However, we want to express an agent’s ability to
reason about the future even when he has little or no knowledge about the actions that will be performed. For
example, we want to say that an agent can predict that the president will give the State of the Union address
in January. Therefore, we need to express an agent’s ability to reason about the future when that future is
expressed not in terms of actions being performed but in terms of the passage of time or specific calendar
dates.

To do this, we assume that the calendar-clock-time structure runs through all possible worlds, and that all
agents always know (believe, believe likely) the date and time.3 That is, they know (believe, believe likely)
the calendar-clock-time of the situation they are in.

Axiom 4 K(A,S1,S2)⇒time(S1) = time(S2)

Due to the subset restriction onL andB, this means that we have as well thatB(A,S1,S2)⇒time(S1) = time(S2)
andL(A,S1,S2)⇒time(S1) = time(S2).

We can now formalize the concept of an agent predicting the future. We say that an agentA knows (resp.
believes, believes-likely) thatQ will be true at some future timeT if, for any knowledge accessible situation
S2, Q will always be true at some situationS3later thanS2, as long asS3’s time stamp isT. It does not matter
what actions happen betweenS2andS3. All that concernsA is the time stamp ofS3.

Note, below, thatKnow-futurecorresponds toKnowandBelieve-futurecorresponds toBelieve, but thatEx-
pect, rather thanBelieve-likely-futurecorresponds toBelieve-likely: Expectseems the closest English word
for this concept and less awkward thanBelieve-likely-future.

Definition 2 holds(S1, Know-future(resp. Bel-future, Expect)(A,Q,T))⇔
∀S2,S3 K(A,S1,S2) (resp. B(A,S1,S2), L(A,S1,S2))∧S2< S3∧time(S3) = T⇒holds(S3, Q)

We can extend this notation so that the third argument can be a time interval, in the expected way:

Definition 3 holds(S1, Know-future(resp. Bel-future, Expect)(A,Q,[T1,T2]))⇔
∀S2,S3,S4 K(A,S1,S2) (resp. B(A,S1,S2), L(A,S1,S2))∧S2< S3∧S3< S4∧time(S3) = T1∧time(S4) = T2

⇒holds([S3,S4], Q)

We further extend the definition, overloading the Know-future/Bel-future/Expect operators so that we can
talk about predictions and expectations of event occurrences:

Definition 4 holds(S1, Know-future(resp. Bel-future, Expect)(A,E, T1))⇔
∀S2,S3 K(A,S1,S2) (resp. B(A,S1,S2), L(A,S1,S2))∧S2< S3∧time(S3) = T1⇒∃S4 occurs(S3,S4,E)

3This assumption is indeed a theorem of the time structure set up in [7]. Note, however, the reliance of the proof on the S5 structure
of the knowledge-accessibility relation, which is not present here.
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We now consider the concept of surprise. We defineA being surprised atS1by a factQ being true atS2or an
eventE occurring starting atS2. First, consider a strawman version. It might seem reasonable to say thatA
is surprised if previous toS2he did not expectQ or E atS2. However, we wish to accommodate scenarios in
which an agent expectsQ or E, but then for some reason (such as obtaining information), changes his mind
and no longer expectsQ or E. Should it then happen thatQ is true atS2or E occurs atS2, A would in fact be
surprised. Therefore, we say thatA is surprised if the following conditions hold:
• S1does not precedeS2. • Any situationS3prior to S2in which A does not expectQ or E is followed by a
later situationS4, still prior to S2, in whichA does expectQ or E.
• In S1, A knows thatQ has held orE has occurred starting atS2. • S1is the first situation for which this is
true.

Note that the correct formalization of surprise entails the strawman version.

Since we overload the definition of surprise for both facts and events, two definitions follow.

Definition 5 holds(S1, Surprise(A,Q, S2))⇔
S1≥ S2∧
holds(S2,Q)∧
∀S3<S2 holds(Expect(A,Q,time(S2))⇒
∃S4 (S3< S4< S2∧¬ holds(S4, Expect(A,Q,time(S2))))∧
∀S5K(A,S1, S5)⇒∃S6 S6≤ S5∧time(S6) = time(S2)∧holds(S6,Q)∧
¬∃S7 (S7< S1∧∀S5 K(A,S7,S8)⇒∃S9 S9≤ S7∧time(S9) = time(S2)∧holds(S9,Q))

By convention, we will say thatA is surprised by an eventE at thebeginningof E’s occurrence.

Definition 6 holds(S1, Surprise(A,E, S2))⇔
S1≥ S2∧
∃S2∗ occurs(S2,S2*,E))∧
∀S3<S2 holds(Expect(A,E,time(S2))⇒
∃S4 (S3< S4< S2∧¬ holds(S4, Expect(A,E,time(S2))))∧
∀S5 K(A,S1,S5)⇒∃S6,S6∗ S6≤ S5∧time(S6) = time(S2)∧occurs(S6,S6*,E)∧
¬∃S7 (S7< S1∧∀S5 K(A,S7,S8)⇒∃S9,S9∗ S9≤ S7∧time(S9) = time(S2)∧occurs(S9,S9*,E))

These definitions characterize the concept of weak surprise, as discussed above. To account for strong sur-
prise, we must explicitly mentionA’s expectation that¬Q hold atT. We give the definition for fluents; the
definition for events is analogous to weak surprise.

Definition 7 holds(S1, Strong-surprise(A,Q, S2))⇔
S1≥ S2∧
holds(S2,Q)∧
∀S3<S2 ¬ holds(Expect(A,¬ Q,time(S2))⇒
∃S4 (S3< S4< S2∧¬ holds(S4, Expect(A,¬ Q,time(S2))))∧
∀S5 K(A,S1,S5)⇒∃S6 S6≤ S5∧time(S6) = time(S2)∧holds(S6,Q)∧
¬∃S7 (S7< S1∧∀S5 K(A,S7,S8)⇒∃S9 S9≤ S7∧time(S9) = time(S2)∧holds(S9,Q))

3 Joint plans

Central to the SBP is a complex notion of planning. Alice and Bob make a plan to buy Carol a gift and to
give it to her, and subsequently execute that plan. The plan involves a variety of actions, performed by both
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Alice and Bob; these actions must be coordinated properly. Moreover, in order for Alice and Bob to reason
that their plan will succeed, they must know that they can and will both faithfully follow the agreed-upon
plan. Reasoning about the success of the plan involves being able to reason about agents’ constructing a joint
plan, delegating and requesting, agreeing to requests, committing to plans, and reserving time to work on the
plans to which they have committed.

We take as the basis of our work the theory of multi-agent planning developed in [8] and extend it to joint
plans. That theory supports showing that certain multi-agent plans will succeed: in particular, plans in
which one agentrequestsanother agent, or requests a group of agents, by issuing abroadcast requestto
perform some plan. The theory has the following features: It is egalitarian in the sense that an agent cannot
simply order other agents to drop their activities and immediately do what he asks. On the other hand, it is
cooperative: every agentreservesblocks of time for every other agent and will work on a requesting agent’s
plan during a reserved time block if it does not interfere with another agent’s plan. A fairly restrictive protocol
specifies exactly when an agentA mayabandona requesting agentA1’s planP1 — specifically, whenA has
no way of continuingP1 or when he is also committed toA2’s planP2, andP2 specifically forbidsA from
doing an action ofP1. A2 can specifically forbidA from doing an action ifA2 governsthat action. This
ensures thatA will not remain permanently committed to a plan that he cannot execute and that he will not
do actions that interfere with other agents’ plans.

A plan is specified in terms of two predicates,succeed(P1, S1)andnext step(E, P1, S1, S2). succeed(Pl, S1,
S2) is true if planP1, started in situationS1, ends successfully inS2. next step(E, P1, S1, S2is true if in
S2actionE is a possible next step of an instance of planP1 begun inS1. next-stepis, essentially, the set of
instructions for an agent to carry out a plan, specifying both the actions he needs to accomplishP1 and the
set of actions that he is permitted to do when, during the execution ofP1, he momentarily turns his attention
to work on another plan.

A proof in this theory of plan executability generally proceeds as follows: One shows that a planP is exe-
cutable by showing that in every unbounded-from-abovesocially-possibleinterval in which an agentcommits
to a plan, hecompletesthat plan. Socially-possible intervals are those intervals in which all agents do what is
requested of them to the extent possible.

An agentcompletesa plan over some interval if hebeginsthe plan andknows that the plan succeedsover
that interval. Hebegins the planover some interval if he has begun it during that interval, and is still in the
process of carrying out: that is, as long as the plan has notterminated, whenever he is at achoice pointof
deciding which action to perform, he knows of some action that is anext-stepof the plan.

A plan is onlyterminatedif it succeedsor if theabandonment conditionsdiscussed above are satisfied.

The predicates corresponding to the italicized words above are discussed in detail in [8], where the complete
set of axioms is given. The paper and a sample proof can be found, respectively, at
www.cs.nyu.edu/cs/faculty/davise/elevator/axioms.ps and www.cs.nyu.edu/cs/faculty/davise/commplan-appb.pdf.

3.1 Extending the planning theory to agents acting together

In the theory of [8], agents, even in multiple-agent plans, always act alone. That is, a requesting agent may
request a number of agents to do some actions, but agents never collaborate. For the SBP, however, we need
to reason about joint plans in which agents collaborate and act together. There are several ways in which we
must extend this theory to handle such plans:

1. Plan formation. In the original theory, a single requesting agent makes a request of one or more agents.
For joint plans, there is no single agent who makes a request; rather, a group of agents jointly decide
on a particular plan.
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2. Reserving time blocks (related to the above point). In the original theory, all agents reserve time blocks
for all other agents. That is how the requesting agent knows an agent will eventually have time to attend
to his requests. Since for joint plans, there is no single requesting agent, it is unclear how time blocks
will be reserved.

3. Joint actions. The original theory forces asynchronous action: only one agent may act at any particular
time. Concurrency is possible in the sense that whenA1 is in the middle of performing some action,
A2 may start some other action. However, they cannot both start actions at the same time, and in
particular, cannot both perform a single action at the same time. The most natural understanding of the
SBP, however, is that Alice and Bob together give Carol her birthday present. That is, joint actions are
necessary.

We discuss our approaches to these problems below:

3.1.1 Plan formation

There are several possible approaches. First, we could arbitrarily choose one of the agents in the plan as
the requesting agent. This agent could formulate a plan in which he does his actions as they come up in the
plan, and in which he requests the other agents to do their parts. This approach is problematic first because
choosing which agent is the requesting agent is arbitrary; second, because it gives one agent considerable
power over the others, for no good reason. A second possible approach would have each of the n agents in a
plan request the other n-1 agents to do certain actions. The main drawback with this approach is the difficulty
of coordinating all agents’ actions among the n plans.

The third approach, which we adopt, is to posit a new entity, called ajoint plan entity(JPE), that represents all
the agents in the plan. A JPE is considered an agent; it is best thought of as similar to a corporate entity. The
sortJ ranges over joint plan entities.members(J) denotes the agents involved in the joint planJ. A particular
joint plan associated with planPi is denotedJPi. J ⊂ A; in particular, this means that all axioms on agents
apply to JPEs. We identify certain actors — those that are not joint plan entities — as individuals, denoted
by the predicateIndividual(A). Actors that are joint plan entities are denoted by the predicateJPE(A).

There are certain things that a JPE cannot do, such as accept plans from any agent including himself. Indeed,
no agent is allowed to issue a request to a JPE.

Axiom 5 ¬∃S1,S2,A,J,P occurs(S1,S2,request(A,J,P))∨acceptsrequest(P,A,J,S1)

All joint plans have a similar structure. The joint plan entity starts the plan—and becomes active—with a
broadcast request to all agents associated with the JPE, specifying the plan that the agents are to carry out;
then the JPE waits. (Corporations issue orders, but do nothing else.) When the JPE’s plan succeeds or is
abandoned, the JPE ceases to be active. We introduce the predicateactive(J, S), indicating that JPEJ is active
in situationS.

Axiom 6 holds(S, active(J))⇔
occurs(S1, S2, broadcastreq(J,members(J),R))∧

[S∈ [S1,S2]∨
[∃A A∈ members(J)∧assignment(R,A) = P∧working on(P,A,J,S2,S)]]

It will be necessary to add the following axiom to the theory, stating that a JPE knows something if all agents
in the entity know it:

Axiom 7 holds(S, Know(J,Q))⇔[ ∀A A∈ members(J)⇒holds(S, Know(A,Q))]
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It will also be necessary to modify the predicategovernswhich in the original theory ranges over an agent
and an action. There will be times when joint plan entities govern many actions; however, we do not wish this
governance to continue beyond the time that the joint plan is active. To express this, we need to add an extra
situational argument togoverns, and then specify that the joint plan governs actions only when it is active.
(See Premise 8 for an example).

3.1.2 Reserving time blocks

The original theory posited that all agents reserve blocks of time for all other agents. (Each agent also reserves
time for himself.) However, it is unrealistic to assume that all agents reserve blocks of time for all possible
joint plan entities or even for all possible combinations of agents. Instead, we allow joint plan entities to
cannibalize the reserved blocks of the plan members. That is, ifA1 andA2 are members of some JPEJ,
some, but not all, reserved blocks of time thatA1has reserved forA2will become reserved forJ .

We alter the original theory as follows: The original theory has predicatesreserved(T, A1, A2)meaning that
time T is reserved byA1 to work on a plan ofA2 andreservedblock(A1,A2,T,D)which is true iff all times
betweenT andT + D are reserved byA1 for A2.

We now call these predicatesinit reservedandinit reservedblock, respectively. These apply only to individ-
ual agents; JPEs, which are created on the fly, do not initially reserve time for anyone else; nor does anyone
assign time for them. We posit a functionallotment(S, A1, A2,{J | A1, A2 ∈ members(J)∧active(J)},
allotment-history(A1,A2,S)). It takes as arguments a situation, 2 agents, all joint plans that are active in that
situation and have those agents as members, and theallotment history. allotment-history(A1,A2,S)gives the
sequence of blocks, starting at s0 (the starting situation of the world), and up toS, initially reserved by indi-
vidual agentA1 for individual agentA2, along with a record of who actually received the blocks:A2or some
JPE with membersA1 andA2. The functionallotmentlooks at the allotment history with respect toA1 and
A2as well as the set of currently active JPEs and determines to whom the block reserved byA1 for A2should
go.

We place some restrictions on this function. First, it is only defined if the agent of the second argument has
originally (initially) reserved a block for the agent of the third argument. Second, when defined, the value
must be either the agent of the third argument or a joint plan containing both the agents of the second and
third arguments. It is assumed that the allotment function uses some sort of protocol, not specified here, to
determine who next gets a block. We then definereservedblock using this allotment function; a block of
time is reserved for whomever the allotment function decrees. Thus we have:

Axiom 8 individual(A1)∧individual(A2)⇒
(reservedblock(A1,A3,T,D)⇔time(S) = T∧

allotment(S,A1,A2,{J | A1, A2∈ members(J)∧active(J)}, allotment-history(A1,A2,S)) = A3)∧
A3 = A2∨[A1,A2∈ members(J)∧holds(S, active(J))∧A3 = J]

JPEs reserve time only for themselves, and only when they are active.

Axiom 9 reservedblock(J,A,T,D)⇒J=A

Axiom 10 holds(S, active(J))⇔[ T = time(S)⇒reserved(T,J,J) ]

This scheme disturbs a concept in the original theory, that ofmaxdelay, the maximum amount of time that can
pass between successive blocks reserved for the same agent. One might think it possible to posit a constant
max init delayand then determine, given the allotment function, whatmaxdelayis. (maxdelayis then not a
constant, but a function, taking the same arguments as the allotment function.) However, if one allows joint
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plan entities to be created at will, and, in fact, allows for multiple joint plan entities to be created by the same
groups of individual agents (thecommittee curse), one cannot necessarily put any upper bound on the value
of maxdelay. This corresponds to a truth in scheduling: if one keeps committing to new plans before one
has finished existing plans, and keeps splitting one’s time, there is no guarantee that one will accomplishany
of the plans. One can mitigate this problem by placing some severe limitations on the activities of joint plan
entities. First, we insist that there be no more than one active joint plan entity associated with each group
of agents. (This corresponds, in a rough way, to the constraint in the original theory that a requesting agent
cannot issue a request to another agent if that agent is already working on a request of his.)

Axiom 11 members(J1) = members(J2)⇒¬(holds(S, active(J1))∧holds(S, active(J2)))

If there are more than a non-trivial number of agents in the world, there can still be very many joint plans
active at any particular point:2n − (n + 1) non-trivial joint plans, wheren is the number of agents.4

Completing plans is feasible, but will take much longer: this may be an important consideration if there are
hard time constraints on the execution of the plan. (This is the case with the SBP.) That is, one can put an
upper bound on the value returned bymaxdelay, but it may turn out too large to ensure successful results for
planning with time constraints.

One could handle this problem by requiring that agents not accept any requests from joint plan entities if
it knows that doing so would raise the maximum value ofmaxdelayabove some threshold. The extended
theory would, in a sense, treat joint plan entities as second-class citizens: a cooperative agent would be
required to accept plans from any individual agent, but not from any JPE. The trouble with this solution is
that once an agent is not required to accept a plan, there is no guarantee at all of a plan succeeding.

We defer the general topic to future research. For this particular problem, we assume that there are only
three agents: Alice, Bob, and Carol. Thus, there can be at most four non-trivial JPEs active at any time.
We can assume some sort of straightforward protocol that cannibalizes time slices reserved for an agent in a
round-robin fashion. This would mean that themaxdelayis no more than five times themax init delay. One
can make some simple assumptions on the times needed to peform actions and the maximum delay times
that will ensure successful results, given the time available for the plan. (We make these assumptions in the
premises.)

3.1.3 Joint actions

The original theory specified that agents act asynchronously, in order to avoid situations where we have to
reason about the interaction of actions that are started at the same time. The most natural understanding of
the SBP, however, is that Alice and Bob jointly give the present to Carol. We therefore extend the theory to
handle joint actions while preserving as much of the spirit of the original theory as possible.

First, we still do not allow concurrency.A1 andA2 are still not allowed to perform different actions concur-
rently: we merely allow multiple agents to perform a single action.

Second, we set things up so that the disturbance in the asynchronous nature of the universe is minimized to
the extent possible. Specifically, it is an axiom of the original theory that two agents never start an action or
end an action at the same time. (The two go together, since agents are always active: as soon as an agent
finishes one action, he starts another.) One exception is made for the start of time since all agents begin to
be active then; this is handled by making that situation a specific exception to the axiom and positing that all
agents start out by performing the action of waiting (varying amounts of time).

We employ a similar trick for joint actions. We introduce the notationDo({A1,. . .,An}, z) to indicate agents

4There are2n possible joint plans, but the plan with no members and then plans with only one member are of no interest.
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A1 . . . An performing actionalz. 5 The sortG ranges over groups of agents;G ⊂ A. Consider such a
joint action. We enforce the following condition: when this joint action occurs over the interval(S1, S2),
all agents do not begin acting simultaneously. We do this by formalizing a joint action as occurring over an
interval that has two segments: an initial segment where agents are waiting for the other agents to catch up,
and a second segment where the performance of the joint action actually occurs. Following the performance
of the joint action, all agents wait for varying lengths of time, as in the starting situation, to make sure
that the performance of actions is once again asynchronous. It faciliates stating this if we assume that to
perform an action that takesmaxaction time, all agents must reserve a block of time equal in length to twice
maxaction time+n · ε and that the actual joint action occursmaxaction time into the interval.

Axiom 12 feasible(do({A1 . . . An}, Z), S)⇔∃S1,S2,...,SnSn > Sn−1 > . . . S2 > S1 ∧time(Sn) = time(S1)
+ max action time∧∀i=1...n reservedblock(time(Si),Ai,Aj, 2·max action time + (i + 1)ε) ∧
feasible(do(Ai,Z), Sn)

Axiom 13 occurs(S1, S2, do({A1 . . . An}, Z))⇒∀i=1...n occurs(S2, S2+i · ε, do(Ai, wait))

We also have to make the appropriate changes to Axiom A.4 in [8], to allow an exception for joint actions to
the axiom of asynchrony:

Axiom A.4’: choice(A1,S1)∧choice(A2,S1)⇒A1 = A2∨∃Z,S2<S1 occurs(S2,S1,do({A1,A2},Z))

A separate and different problem, which we do not solve in general here, is ensuring that multiple agents will
simultaneously have some time block reserved for the JPE. For if they do not all have some identical block
of time reserved for the JPE, they obviously cannot perform the joint action. There is no guarantee that this
will in general happen.

For the SBP, however, we will need to deal with a joint action only once, when Alice and Bob jointly give
Carol her birthday present on her birthday. We can handle the issue for this particular case by positing first,
that Alice and Bob keep that day free; i.e., each reserves the entire day for herself/himself, and second, that in
cases where agents reserve large blocks of time for themselves, the allotment function will be able to assign
a block of time in which both of them can perform the joint action.

To accomplish this, we add an axiom stating that if there exists a JPEJPi with membersA1, . . . , An and one
of the actions inPi is a joint action involving some subset of the members ofJPi, and each of the agents in
that subset has initially reserved an identical large block of time for himself, then the allotment function will
assign an identical portion of this identical block of time to each of the agents in the subset to work on plan
Pi. For our purposes, a reserved block of time is “large” if it is at least 24 hours, and the portion of the large
block of time allotted to the agents in the joint plan is sufficient to perform an action.

Axiom 14 (members(JPi) = AN ∧AM ⊆ AN ∧D ≥ 24 ∧A ∈ AM ⇒[ init reservedblock(A,A,T,D))∧one-
step(E,Pi)∧E = do(AM,Z)
⇒∃D1,D2 D1 < D2 < D3∧D2-D1≥ maxaction time∧reservedblock(A,JPi,T+D1,D2-D1)]

This might disturb, though only slightly and temporarily, the round-robin allotment discussed previously. We
could account for it by using a higher constant multiple ofmax init delayto getmaxdelay. We do this in the
premises.

This ad hoc solution seems to hint at the larger solution. One can arrange for multiple agents to perform joint
actions, when each of the agents has ceded large blocks of time in some way, whether each agent to himself
or each agent to some corporate entity.

5An actional is an action unanchored by an agent; e.g.,give(A2, X)is the actional of giving objectX to agentA2. Agents perform
actionals.
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4 Proving that Alice and Bob’s plan will work

In this section, we state Alice’s and Bob’s plan to give Carol a gift on her birthday, show that Alice and Bob
will be able to execute the plan, and show that Carol will be surprised when she receives the gift.

We organize this section as follows: To avoid losing the reader as (s)he slogs through myriad axioms about
ownership, purchase, the transfer of money, and all that agents know about these actions, we state the domain
axioms at the end of this section. We first give the plan specification; then discuss the frame problem in the
context of this theory, and then sketch the proof; this is followed by the statement of the problem premises and
domain axioms. The reader is encouraged to flip to the axioms when reading through the plan specification
and the proof sketch.

4.1 Plan Specification

As we have set up the problem, there are two plans: the JPE’s plan to broadcast the request to Alice and Bob,
and the joint plan that Alice and Bob carry out. (In a fuller treatment of this problem, there would be at least
two more plans: one in which Alice and Bob decide to go into a closed room and one in which Alice and Bob
come to a decision about which present to get and how to organize their plan to get it.)

A few remarks about these axioms. The predicatefirst opportunity(S2, AC, AR, S1, Q)is true whenS2is the
first situation sinceS1whenAC has reserved a block of time forAR andQ is true. This predicate is used
when specifying plans: a plan specifies that an agent do some action at his first opportunity. The fluents that
are used in statements of this sort are often quite complicated; therefore, they are usually abbreviated in the
next stepspecification and defined in subsequent axioms.

Specification of p1:

Plan p1 is specified as follows: At the first opportunity when Carol is not in earshot of Alice and Bob, the JPE
broadcasts a requestr2 to Alice and Bob. At all other times, the JPE waits. (Recall that the JPE is an artificial
entity created just for the formation of joint plans; its main function consists in broadcasting the request.)

Plan Spec Axiom 1 next step(E, p1, S1, S2)⇔
action(E,Jp1) ∧
first opportunity(S2,Jp1, Jp1, S1, p1f) ⇒
instance(E, broadcastreq(Jp1, {alice,bob}, r, S2)∧
¬first opportunity(S2,Jp1,Jp1), S1, p1f) ⇒action(E,Jp1) = wait

p1 f is true when Carol is not in earshot of either Alice or Bob.

Plan Spec Axiom 2 holds(S, p1f) ⇔¬holds(S, inearshot(carol, bob))∧¬holds(S, inearshot(carol, alice))

The request that the JPE broadcasts to Alice and Bob is to perform the planp2.

Plan Spec Axiom 3 A = alice∨A = bob⇒assignment(r,A) = p2

p1succeeds if Carol ultimately receives the gift on her birthday.

Plan Spec Axiom 4 succeeds(p1,S1,SN)⇔
∃SM,SN SM,SN∈ birthday(carol)∧occurs(SM, SN, do(carol, receive-gift))

Specification of p2:
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Planp2 is specified as follows: First Alice gives Bob $10, earmarking it for the giftxgift. Then Bob gives
himself $10, earmarking it forxgift. (This step facilitates proving that this is indeed a joint gift: other
formulations are possible but potentially more awkward. Also note that Alice needn’t give Bob money before
Bob earmarks his own money; such an order is not enforced by the plan.) Then Bob purchasesxgift. Then
Alice and Bob together give Carol the gift. The plan is formalized with the help of flagsp2 q1 . . . p2 q4
which trigger the events in the plan. These flags are specified in the premises below.

p2 must also specify the actions that are taken when Alice and Bob are not working for the JPE. This plan
allows Alice and Bob to do almost any action, but places limitations on their abilities to spend money, give
things, and talk. In particular, they cannot give money to anyone except for Bob unless they always have at
least $20 left or the money is going toward the purchase of the gift; they cannot give the gift to anyone but
Carol, and not even to Carol until her birthday; and they are not allowed to tell anyone that there is a plan
afoot which includes giving Carol the gift. The techniques used to represent informing an agent of relatively
complex fluents is taken from [6].

Plan Spec Axiom 5 next step(E,p2,S1,S2)⇔
action(E, alice)∨action(E, bob)∧
p2 q1(S2,S1)⇒E = do(alice, give-earmark-cash(bob, 10, xgift))∧
p2 q2(S2,S1)⇒E = do(bob, give-earmark-cash(bob, 10, xgift))∧
p2 q3(S2,S1)⇒E = do(bob, purchase(xgift))∧
p2 q4(S2,S1)⇒E = do(alice,bob, give(carol,xgift))∧
(* Now the plan specifies the forbidden actions *)
(A1 = alice∨A1 = bob∨A1 = {alice,bob}) ∧(E = do(A1, give-cash(A2, N))∨E = do(A1,purchase(X)))
⇒cash(A1, S2)≥ N + 20∨A = bob∨X = xgift
∧
¬time(S2)∈ birthday(Carol)⇒E 6= do(A1, give(A3, xgift))

∧
time(S2)∈ birthday(Carol)∧E = do(A1, give(A3, xgift))⇒A3 = carol

∧
¬∃E1,P,A3,A4,X E = do(A1,Inform(A2,Q))∧

[Holds(S,Q)⇔∃Si,Sj Si< Sj≤ S∧occurs(Si,Sj, request(A3,A4,P))∧
one-step(E1,P)∧E1 = do(A3,give(carol,X))

Below is the specification for the plan flags forp2. p2 q1 is set at the first opportunity that Alice has a reserved
block of time for the JPE and also has at least $10. (Planp2 above specifies that when that flag is set, Alice
gives $10 to Bob.)p2 q2 is set at the first opportunity that Bob has a reserved block of time for the JPE and
also has at least $10.p2 q3 is set at the first opportunity after both Alice and Bob have earmarked money for
xgift that Bob has a reserved block of time and also has at least $20.p2 q4 is set at the first opportunity on
Carol’s birthday that Alice and Bob both have reserved blocks of time for the JPE and one of them hasxgift.

Plan Spec Axiom 6 Fluents and flags:
first flag:
p2 q1(S,so)⇔first opportunity(S, alice,Jp1, ss, p2q1 f)
first flag fluent:
holds(S, p2q1 f) ⇔cash(alice,S)≥ $10∧reservedblock(time(S),alice,Jp1, maxaction time)
second flag:
p2 q2(S,so)⇔first opportunity(S, bob,Jp1, ss, p2q2 f)
second flag fluent:
holds(S, p2q2 f) ⇔cash(bob,S)≥ $10∧reservedblock(time(S),bob,Jp1, maxaction time)



14

third flag:
p2 q3(S,so)⇔first opportunity(S, bob,Jp1, ss, p2q3 f)
third flag fluent:
holds(S, p2q3 f) ⇔∃S1,S2,S3,S4 S1 < S2 < S ∧S3 < S4 < S ∧occurs(S1,S2, do(alice, give-earmark-
cash(bob, 20, xgift)))∧
occurs(S3,S4, do(bob, give-earmark-cash(bob, 20, xgift)))∧cash(bob,S)≥ 20∧reservedblock(time(S),bob,

Jp1, maxaction time)
fourth flag:
p2 q4(S,so)⇔first opportunity(S,{alice,bob}, Jp1, ss, p2q4 f)
fourth flag fluent:
holds(S, p2q4 f) ⇔
time(S)∈ birthday(carol)∧
holds(S, phys-possess(bob,xgift))∨holds(S, phys-possess(alice,xgift))∧
reservedblock(time(S),{alice,bob}, Jp1, 2 · maxaction time + ε)

The success condition is simply that the steps in the plan have been completed in the appropriate order.

Plan Spec Axiom 7 succeeds(p2,S1,SN)⇔
∃S2,S3,S4,S5,S6,S7,S8,S9 S1< S2,S4,S6,S8∧S2< S3∧S4< S5∧S3,S5< S6< S7< S8< S9≤ SN∧
occurs(S2,S3, do(alice, give-earmark-cash(bob, 10, xgift)))∧
occurs(S4,S5, do(bob, give-earmark-cash(bob, 10, xgift)))∧
occurs(S6,S7, do(bob, purchase(xgift)))∧
occurs(S8,S9, do({alice,bob}, give(carol, xgift)))

4.2 The Frame Problem in this Context

The frame problem [17] is the problem of determining which fluents stay the same in a changing world.
When one specifies a theory, one generally specifies how actions change the world; for example, putting one
block on top of another changes the location of the first block. However, in order to reason successfully, one
must also reason about all the things that stay the same, such as the location of the second block.

Any solution to the frame problem works by making quite a lot of assumptions. One can make these assump-
tions within a monotonic logic or within a nonmonotonic logic. The primary advantage of a nonmonotonic
logic is that one need not make these assumptions explicitly; the nonmonotonic reasoning mechanism does
most of the work.

A common solution to the frame problem within a monotonic logic, popularized by Reiter [23], works by
specifyingexplanation closureaxioms: axioms that state the complete set of actions that can modify a fluent.
A problem statement will typically have to state, explicitly or implicitly, that the actions that could modify a
particular fluent do not in fact happen. (In the original situation calculus, the non-occurrence of actions not
specified with theResultor Do function is implicit.)

Approaches to the problem in a nonmonotonic logic work similarly. Shanahan [25], for example, circum-
scribes the causal predicates of a theory (Initiates, Terminates, andReleases), essentially mirroring the effect
of explanation closure, and circumscribes the occurrence predicateHappens, which entails, roughly, that as
few actions as possible happen.

In this preliminary work, we proceed with a monotonic approach to the frame problem. There are three
reasons for this choice. First, integrating theories is always time-consuming and often difficult: we believe
that any attempt to integrate Shanahan’s (or another) nonmonotonic solution with our theory of mult-agent
and joint planning would overshadow any other aspect of the SBP. (In particular, the Event Calculus, on which
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Shanhan’s solution is based, provides an excellent representation for narratives, but is not so well suited for
expressing plans.)

Second, the SPB problem description specifically states that a theory ought not entail that no actions happen
other than the actions in the plan. But this is precisely what nonmonotonic solutions to the frame problem
entail; that is how they work. Within a monotonic theory, one has a bit more latitude; it is easier to fine-tune
things so that one does not wind up eliminating as many action occurrences. Thus, it is much easier to satisfy
this constraint within a monotonic theory.

Third, the way the planning theory is set up, one anyway has to specify that certain actions are forbidden,
namely, the actions that would interfere with the rest of the plan. These actions turn out to be remarkably
similar to the sorts of actions one would have to explictly exclude from occurrence in a monotonic theory.
For example, consider the actions that are prohibited to Alice and Bob inp2. They cannot spend down their
money (before earmarking); they cannot give away the gift intended for Carol; they cannot tell anyone about
their plan to give Carol a gift. These correspond to non-occurrence axioms stating that spending down money
(below $20) never occurs; that Alice and Bob do not give away the gift; that Alice and Bob do not tell anyone
about their plan. But they are not non-occurrence axioms: they are part of the plan specification.

This form of plan specification, therefore, has the potential to reduce the number of frame-problem-related
assumptions one must make. One must still specify all explanation closure axioms; however,if the only
agents in the universe are the agents involved in the plan, one may sometimes get away without extra non-
occurrence axioms. One cannot get away without extra axioms if there are other agents in the universe, or
if there are multiple plans, some of which don’t specify non-occurrence. For example, for the SBP, one
must specify that no occurrences of actions with potentially harmful effects happen during the time the JPE
broadcasts the joint plan request to Alice and Bob.

The precise connection between plan specification and non-occurrence axioms as they relate to the frame
problem is a subject for future research. In particular, we would be interested in determining whether non-
monotonic techniques could aid in the formulation of the negative part of a plan specification, and in deter-
mining which conditions a requesting agent must govern.

4.3 Proof Sketch

We first show that plansp1andp2can be successfully executed, resulting in Carol receiving the gift, and then
show that she will be surprised. In what follows below, we will frequently indicate, throughout the argument,
whether a fact follows from the original theory (O), a lemma in the proof sketch (PS), or the extended theory
(ET). 6

The proof proceeds as follows: We begin by considering the second planp2. Assume that betweenssandS1
Jp1 issues a broadcast request to Alice and Bob to performp2. Then, in any socially possible interval that
includesssandS1, both Alice and Bob accept the request to performp2. Thus, both are committed top2 in
S1(O).

Now consider the plan flagsp2 q1, p2 q2, p2 q3, andp2 q4. We can show that Bob and Alice always know
when these are true, and moreover, know when it is the first opportunity that a fluent holds (PS). For agents
always know when they have reserved blocks of time (PS). Further, they know how much money they have,
whether they own things, and know about the previous earmark-cash, purchase, and giving actions that they
have performed (ET). We must show in addition that there will be such blocks of time available for Alice and
Bob to perform their actions before Carol’s birthday; and a block of time available on Carol’s birthday for
Alice and Bob to perform their joint action. This is a consequence of the problem premises specifying Alice

6The original theory and the proof sketch are available at www.cs.nyu.edu/faculty/davise/elevator/axioms.ps and
www.cs.nyu.edu/faculty/davise/commplan-appb.pdf ; the extended theory refers to the development in this paper.
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and Bob’s free time, the maximum action time for doing actions, the maximum delay time during which
agents can turn their attention to other plans, the length of time remaining until Carol’s birthday, and (for the
block of time available on Carol’s birthday) the axiom (ET) on reserved blocks of time for joint plans.

We must show that
p2 qi(S2,S1)⇒knownextstep(E, p2, alice,Jp1, S1)⇒E = do(alice, give-earmark-cash(bob, 10, xgift))
(and similarly for the other plan steps).

For the first plan step, we must show that the actionE is feasible inS2and that Alice knows thatE is a
next-step in the plan. We can show it is feasible inS2using the premises in the problem statement (i.e., Alice
has $10), explanation closure axioms, the non-occurrence of events betweenssandS1, and the conditions in
the plan specification not allowing Alice to spend down below a certain amount of money.

We reason similarly to show thatp2 q2(S2,S1)implies that Bob knows that the next step ofp2 is earmarking
money for himself; feasibility is again shown using a combination of problem premises, non-occurrence of
events, and explanation closure axioms. Similarly to show thatp2 q3(S2,S1)implies that Bob knows that the
next step ofp3 is purchasing the gift; and similarly to show thatp2 q4(S2,S1)implies that both Alice and Bob
know that the next step ofp2 is jointly giving the gift. For this last step, demonstrating feasibility appeals
to requirements that the domain theory places upon joint giving: joint giving is possible only if all agents
involved have earmarked money for the gift.

This will suffice to show that the predicatebeginplan (meaning, having begun and in the process of carrying
out the plan, as long as the plan has not terminated) is true over any socially acceptable interval[S1,Sz].
Furthermore, we can show that the plan does not terminate before the final step of the plan has been per-
formed. Termination can occur only if the plan succeeds or the plan has been abandoned; but neither of the
abandonment conditions will be satisfied. For we have shown that it is always feasible for Alice and Bob to
perform their steps inp2; and when, during[S1,Sz], Alice and/or Bob are working on some other planp3 for
some other agent, if they are requested to perform one of the forbidden actions, they will abandonp3, notp2,
due to the fact thatJp1 governs the forbidden actions. (O, ET)

We can also demonstrate certain properties of the situations in which the plan fluents first hold, using our
premises onmaxactionandmaxdelay, and our axioms on allotment. In particular, we can show that the gift
is purchased before Carol’s birthday, and that there will be a first opportunity, on Carol’s birthday, in which
Alice and Bob both have allocated time for giving Carol her gift. (ET)

Finally, all agents know the actions that they have performed. Therefore, when the final step of the plan
has been performed, Alice and Bob know it; therefore, they know the plan has succeeded. Thefore the plan
completes, which means that the plan is executable. (O, ET)

Now let us turn our attention top1. Since Alice and Bob are not in earshot of Carol inss, they know that
this is the case; therefore,Jp1 knows it; therefore it knows thatp1 f holds; further, it knows thatssis the first
opportunity (sincess) when this is true. Furthermore it is always feasible to issue a broadcast request (O).
Thus, inss, Jp1 knows the next step in planp1 and can perform it. Since it is always feasible to wait and no
one governs the action of waiting (O), and this is known by all agents, we can show that once the request has
been made,Jp1 can continue to execute the planp1.

In the proof sketch thatp2was executable, we showed that Alice and Bob can reason thatp2will successfully
execute, and that Alice and Bob will jointly givexgift to Carol on her birthday. When this occurs, Alice
and Bob will know that they have given the gift, and will therefore know that Carol has received the gift.
Therefore,Jp1 will know it. Thus the plan will complete andJp1 can successfully execute the plan.

Finally, we must show that Carol is surprised. Assume thatp1 executes over the interval[ss,Sz]. (Note that
p1andp2complete at the same time.) Then there exists some situationSysuch that Alice and Bob give Carol
the gift over[Sy,Sz], where[Sy,Sz]is a subinterval of Carol’s birthday.
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Now we know from the problem premises that inss, Carol does not expect to receive a gift on her birthday.
We have as one of our explanation closure axioms that a person who does not expectE will come to expect
thatE will happen (prior to its occurrence) in one of only two ways: either by being informed that some plan
that includesE is afoot, or by hearing a broadcast request to some agents of some plan that includesE. By
hypothesis, Carol is not in earshot of Alice and Bob, and thus cannot hear the broadcast request. Moreover,
no inform occurrences happen during the broadcast request. Furthermore,p2, which covers any time between
the broadcast request and the giving of the gift, specifically forbids Alice and Bob telling anyone that anyone
is working on a plan that includes giving Carol a gift on her birthday. Therefore, Carol will not be informed
of the gift giving prior to her birthday.

By the definition of surprise, she will therefore be surprised when she receives her gift.

4.4 Domain Axioms

PREMISES: STARTING SITUATION

The only individual actors are Alice, Bob, and Carol:

Premise 1 Individual(A)⇒A = alice∨A = bob∨A= carol

In the starting situation ss Carol does not expect to receive a gift on her birthday.

Premise 2 ¬[ T ∈ birthday(carol)⇒holds(ss, Expect(carol, do(carol,receive-gift(carol)), T))]

Alice and Bob each have at least $10.

Premise 3 cash(alice,ss)≥ 10∧cash(bob,ss)≥ 10

The cost of xgift is $20.

Premise 4 cost(gift1) = 20

At the start, neither Alice, Bob, nor Carol owns the gift.

Premise 5 ¬holds(ss, phys-possess(alice, xgift))∧¬holds(ss, phys-possess(bob, xgift))∧¬holds(ss, phys-
possess(carol, xgift))

At the start, Carol is not in earshot of Alice or Bob.

Premise 6 ¬holds(ss, inearshot(carol, bob))∧¬holds(S, inearshot(carol, alice))

We need some housekeeping axioms concerning reserved blocks of time, the length of time to do actions, the
amount of time until Carol’s birthday, etc. We assume units of one hour.

Premise 7 Housekeeping axioms:
T = start(birthday(carol))⇒init reservedblock(T, alice, alice, 24)
T = start(birthday(carol))⇒init reservedblock(T, bob, bob, 24)
maxaction time = .5
max init delay = 2
maxdelay = 20
start(birthday(carol))≥ time(ss) + 312(at least 13 full days till the birthday starts)
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The joint plan entityJp1, while it is active, governs the following actions of Alice and Bob: their spending
down to below $20; their giving anyonexgift, and their telling anyone about a plan to give Carol a gift. Note
that the governance axioms are very similar to the specification of the forbidden actions inp2.

Premise 8 WhatJp1 governs:
Jp1 governs spending down below $20 unless purchasing the gift:
active(Jp1,S)⇒
(A1 = alice∨A1 = bob∨A1 = {alice,bob}) ∧

(E = do(A1, give-cash(A2, N))∧A2 6= bob)∨(E = do(A1, purchase(X))∧X 6= xgift))∧
cash(A1, S)< N + 20
⇒governs(Jp1, E, S)

Jp1 governs giving the gift before Carol’s birthday, and to anyone but Carol on her birthday
¬time(S)∈ birthday(Carol)∧E = do(A1, give(A3, xgift))∨
time(S)∈ birthday(Carol)∧E = do(A1, give(A3, xgift))∧A3 6= carol
⇒governs(Jp1, E, S)

Jp1 governs telling anyone about working on a plan that involves giving Carol a present
∃E1,P,A3,A4,X (E1 = do(A3,give(carol,X))∧one-step(E1,P)∧E= do(A1,Inform(A2,Q))∧

[Holds(S1,Q)⇔∃Si,Sj Si< Sj≤ S1∧occurs(Si,Sj, request(A3,A4,P)) ]
⇒governs(Jp1 , E, S)

PRECONDITIONS ON ACTIONS:

You can give cash to someone if you own at least that amount of cash:

Axiom 15 feasible(do(A1,give-cash(A2,N)),S)⇔choice(A1,S)∧cash(A1,S)≥ N

That same precondition holds for giving cash to someone, earmarked for a particular purpose. A richer theory
would require that this concept entail some notion of intention; this is deferred to future work.

Axiom 16 feasible(do(A1,give-earmark-cash(A2,N,X)),S)⇔choice(A1,S)∧cash(A1,S)≥ N

You can give an object to someone if you physically possess that object:

Axiom 17 feasible(do(A1,give(A2,X)),S)⇔choice(A1,S)∧holds(S, phys-possess(A1,X))

You can buy something as long as you have sufficient cash:

Axiom 18 feasible(do(A,purchase(X)),S)⇔choice(A,S)∧cost(X) = N∧cash(A,S)≥ N

Two agents can jointly give an object to a third agent as long as the following conditions hold:
— one of them physically possesses the object
— both of them have contributed money earmarked toward the object (before the giving of the object, not
necessarily before the purchase of the object). The amount of money relative to the cost of the object isn’t
specified; any contribution is sufficient. However, the amount of each agent’s contribution must be less than
the cost of the object; otherwise, the others’ earmarking doesn’t count.
— both of them have reserved appropriate blocks of time as discussed above.

Axiom 19 feasible(do({A1,A2}, give(A3, X)), S)⇔
(holds(S, phys-possess(A1,X))∨holds(S,phys-possess(A2,X)))∧
∃S2,S3,S4,S5,S6,S7,A4,N1,N2,D,Sj S2< S3∧S4< S5∧S6< S7∧S3,S5,S7< S∧(A4=A1∨A=A2) ∧N1 <

cost(X)∧N2< cost(X)∧
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occurs(S2,S3, do(A1, give-earmark-cash(A4,N1,X)))∧occurs(S4,S5, do(A2, give-earmark-cash(A4,N2,X)))
∧
occurs(S6,S7, do(A4,purchase(X)))∧
time(Sj) = time(S) + D∧choice(A1, S)∧occurs(S, Sj, do(A1, wait))∧choice(A2, Sj)

CAUSAL AXIOMS:

If one agent gives an object to a second, the first agent no longer has it, and the second does.

Axiom 20 occurs(S1,S2, do(A1, give(A2,X)))⇒holds(S2, Phys-possess(A2,X))∧¬holds(S2, Phys-possess(A1,X))

The transfer of money works similarly:

Axiom 21 occurs(S1,S2, do(A1, give-cash(A2,N)))⇒(cash(A1,S2) = cash(A1,S1) - N)∧(cash(A2,S2) =
cash(A2,S1) + N)

Purchasing an object results in an agent possessing the object but having less money.

Axiom 22 occurs(S1,S2, do(A, purchase(X)))⇒holds(S1, phys-possess(A,X))∧cash(A,S2) = cash(A,S1) -
cost(X)

If someone tells you something, you will believe it.

Axiom 23 occurs(S1,S2,Inform(A1,A2,Q))⇒holds(S2,Believe(A2,Q))

If A1overhearsA3requestingA2 to do some plan, he will subsequently know thatA2has accepted the request
to perform that plan. (Note thatA1 canknow that the plan will be accepted because agents always accept
requests to do plans, as long as they do not have an outstanding request from the requesting agent. But the
requesting agent is constrained from making such a request.)

Axiom 24 occurs(S1,S2, request(A3,A2,P))∧holds(S1,inearshot(A1,A2))
⇒

[ [holds(S,Q)⇔
time(S1) = time(S2)⇒acceptsreq(P,A2,A3,S)]
⇒holds(S2, Knows(A1,Q)) ]

The axiom above will be used together with the following. IfA1 knows or even just believes thatA2 has
accepted a request fromA3 to performP, and one of the steps ofP is some actionE, then he will expect
E to be performed at some time in the future. This is an expectation rather than knowledge of some future
event, becauseA1does not necessarily know that all the circumstances that are crucial for the success ofP to
actually hold.

Axiom 25 holds(S2, Believe(A1,Q))∧
holds(S,Q)⇔(K(A1,S2,S)⇒acceptreq(P,A2,A3,S)
∧one-step(E,P)]⇒
∃T T > time(S2)∧holds(S2,Expect(A1,E,T))

RELATIONS BETWEEN ACTIONS:

If one has given cash to someone earmarked for some purpose, one has certainly given them cash.

Axiom 26 occurs(S1,S2, do(A1, give-earmark-cash(A2, N, X)))⇒occurs(S1,S2, do(A1, give-cash(A2,N)))
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Giving entails receiving.

Axiom 27 occurs(S1,S2, do(A1, give(A2,S)))⇒occurs(S1,S2, do(A2, receive(A1,X)))

Definition of receiving some present from someone:

Definition 8 occurs(S1,S2, do(A1, receive-gift))⇔∃A2,X occurs(S1,S2, do(A1,receive(A2, X)))

KNOWLEDGE AXIOMS:

Axiom 28 In ss, Alice and Bob know all the premises. (Premises, not axioms; since axioms are true in all
possible worlds, these are known in any theory based on a possible-worlds semantics for knowledge.)

This means, for example, that Alice and Bob know inss that Carol is not in earshot and that the gift costs
$20.

Agents always know when it’s someone’s birthday:

Axiom 29 time(S1)∈ birthday(A1)∧K(A2,S1,S2)⇒time(S2)∈ birthday(A1)

Agents always know how much money they have:

Axiom 30 Cash(A,S1) = N⇒(K(A,S1,S2)⇒Cash(A,S2) = N)

Agents always know when they have been involved in a giving action, earmarking money action, or purchas-
ing action:

Axiom 31 Knowledge of actions:
occurs(S1,S2, do(A, purchase(X)))∧K(A, S2,S2A)⇒
∃S1A K(A, S1,S1A)∧occurs(S1A, S2A, do(A, purchase(X)))

occurs(S1,S2, do(A1, give(A2, X)))⇒
(K(A1, S2,S2A)⇒∃S1A K(A1, S1,S1A)∧occurs(S1A, S2A, do(A1, give(A2,X)))∧
(K(A2, S2,S2A)⇒∃S1A K(A2, S1,S1A)∧occurs(S1A, S2A, do(A1, give(A2,X)))

occurs(S1,S2, do(A1, give-cash(A2, N)))⇒
(K(A1, S2,S2A)⇒∃S1A K(A1, S1,S1A)∧occurs(S1A, S2A, do(A1, give(A2,N)))∧
(K(A2, S2,S2A)⇒∃S1A K(A2, S1,S1A)∧occurs(S1A, S2A, do(A1, give(A2,N)))

occurs(S1,S2, do(A1, give-earmark-cash(A2, N,X)))⇒
(K(A1, S2,S2A)⇒∃S1A K(A1, S1,S1A)∧occurs(S1A, S2A, do(A1, give-earmark-cash(A2,N,X)))∧
(K(A2, S2,S2A)⇒∃S1A K(A2, S1,S1A)∧occurs(S1A, S2A, do(A1, give-earmark-cash(A2,N,X)))

EXPLANATION CLOSURE AXIOMS

The only way to have less money is to give it to someone or purchase an item:

Axiom 32 S1< S2∧cash(A1,S1) = N1 and cash(A1,S2) = N2∧N1< N2
⇒(∃X,S3,S4 S1≤ S3< S4≤ S2∧occurs(S3,S4, do(A1, purchase(X)))∧cost(X) = N1 -N2)∨
(∃N3,A2,X,S3,S4 S1≤ S3< S4≤ S2∧(occurs(S3, S4, do(A1, give-cash(A2,N3)))∨occurs(S3, S4, do(A1,

give-earmark-cash(A2,N3,X))))

The only way to lose possession of an item is to give it to someone. (For this preliminary version, we are
not considering the pre-purchase owner of an item; this was done in order to minimize the total number of
agents.)



21

Axiom 33 S1< S2∧holds(S1, phys-possess(A1,X))∧¬holds(S2, phys-possess(A1,X))
⇒∃A2,S3,S4 S1≤ S3< S4≤ S2∧occurs(S3,S4, do(A1, give(A2,X)))

The only way to gain possession of an item is to get it from someone or to purchase it:

Axiom 34 S1< S2∧¬holds(S1, phys-possess(A1,X))∧holds(S2, phys-possess(A1,X))
⇒[ ∃A2,S3,S4 S1≤ S3< S4≤ S2∧occurs(S3,S4, do(A2, give(A1,X)))∨
∃X,S3,S4 S1≤ S3< S4≤ S2∧occurs(S3,S4, do(A1, purchase(X)))]

If someone does not expect an action to happen, he will revise his expectations only if he find outs that there
is a plan afoot that includes the action. In this formalization, we assume that there are only two ways for this
to happen: one can overhear such a plan request being issued, or one can be told that such a plan request has
been issued.

Axiom 35 ¬holds(S1, Expect(A1,E,T))∧S2> S1∧holds(S2,Expect(A1,E,T))
⇒
∃Ax,Ay,Az,Sx,Sy,X S1≤ Sx< Sy≤ S2∧
one-step(E,P)∧E=do(Ay, give(carol,X))∧

[holds(Sx, inearshot(A,Ay))∧[ occurs(Sx,Sy,request(Ax,Ay,P))]∨
occurs(Sx,Sy,do(Az,inform(A,Q)))∧
[holds(Q,S)⇔
∃Si,Sj Si< Sj≤ S∧occurs(Si,Sj,request(Ax,Ay,P))]

NON-OCCURRENCE AXIOM

Alice and Bob just wait whileJp1 is broadcasting the request to dop2:

Axiom 36 occurs(S1,S2, broadcastreq(Jp1, {alice,bob}, R)))∧
(A1= alice∨A1 = bob)⇒assignment(R,A1) = p2
⇒occurs(S1,S2, do(alice, wait))∧occurs(S1,S2, do(bob, wait)))

5 Problem Variants

Any formalization of a commonsense reasoning problem must be judged, at least in part, on how easily that
theory can be extended to handle problem variants, that is, by how elaboration tolerant [18] the theory is.
Below, we discuss the variants that the theory presented in this paper can currently handle, and how we might
extend the theory to handle other variants.

Since we make no reference to location and have no theory of spaces or rooms, we clearly cannot handle
certain variants: those where Carol is in the room where Alice and Bob are doing the planning, or where
Carol is in the next room and the door is open. We likewise cannot handle the cases where Alice and Bob
formulate their plan during a walk outside or pass a hidden message.

We can, however, handle an important subset of the variants. First, we can handle the variant when Carol is
in earshot of Alice and Bob. We have an axiom stating that if an agent overhears someone requesting a plan,
he knows that it will be accepted. Moreover, this agent will expect that any event that is a step of the plan
will occur. Thus, if Carol hears the JPE broadcasting its request to Alice and Bob, she will expect to get a
present. Similarly, the theory can handle the variant in which someone tells her that some agents are working
on a plan that includes giving her a gift.

We can handle, in part, the variant in which Alice and Bob cannot agree on a present. In such a case,
presumably there will be no joint plan entity, which would mean there is no earmarking of cash, no purchase,
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no joint gift. As yet, we have not sufficiently formalized the concept of joint plan entity to express or entail
what it means when Alice and Bob cannot agree on a joint plan. We do not formalize the stage where the plan
is discussed; we only formalize the stage where the plan is laid out in detail. For similar reasons, we cannot
entirely handle the variants where Alice and Bob do not consult together. We can, however, certainly show
that if Alice or Bob purchases the gift alone, without the other having earmarked money toward that purpose,
that it does not count as a joint gift.

It is also possible, using this theory, to reason about a variant in which Alice and Bob wait to give Carol
her gift until after Carol’s birthday. One cannot reason about this particular circumstance if, in the starting
situation, the joint plan entity requests Alice and Bob to performp2, since thenext stepspecification ofp2
requires that the gift be given on Carol’s birthday. However, one could formulate a similar planp3 in which
Alice and Bob give the gift at the first possible opportunity after 12:01 AM on Carol’s birthday, and one could
alter the axioms on allotment and reserved blocks so that it is not necessarily the case that Alice and Bob are
able to give the gift on Carol’s birthday. Then although one could show that once Carol gets the gift, she is
surprised, one could also demonstrate that it is possible that it is not on her birthday that Carol is surprised.

The theory can easily handle situations in which Alice and Bob jointly buy the gift. One can either specify
the plan to include a joint purchasing action, or specify that the purchasing action may be done either jointly
or singly, by either Alice or Bob.

6 Conclusion

This paper presents the results of the first phase of our work in constructing a first-order axiomatization for
a simplified version of the Surprise Birthday Present Problem, one of a set of challenge problems for the
commonsense reasoning community. Thus far, our results include the development of a possible-worlds se-
mantics for the concepts of surprise, and the extension of a first-order theory for communication and planning
to handle joint planning and action. We defer to future work proving that this extension shares the properties
(such as consistency) of the original theory presented in [8].

We have demonstrated that this theory, together with some rudimentary axioms on giving, transferring money,
and purchasing, suffices to demonstrate the goal of the SBP — showing that Carol is surprised when she
receives her gift — and that we can handle many of the listed variants. In addition, the axiomatization satisfies
the constraints set forth in the problem: the theory does not entail that Carol knows nothing of consequence,
and does not entail that nothing happens except for the actions in the plan.

The second phase of this project will include developing the axiomatization for a less restricted version of
the SBP. There are two major gaps in the axiomatization as it now stands: the lack of a theory of perception,
and in particular, an integrated theory of perception and knowledge, and the lack of an account of how agents
come to decide on a collaborative plan. The work of [2] on inferring ignorance from what is not perceived is,
not surprisingly, particularly relevant to the first issue. Existing work on multi-agent negotiation [15] and on
intentionality (joint or otherwise) [1] [14] may be relevant to the second.

Mid-sized axiomatizations of this sort are not common in the AI logicist community. This has hampered the
development of a set of criteria for evaluation: As Nagel ([21] has argued, it is difficult to establish evaluative
criteria before there is a critical mass of work in a particular area. Nevertheless, we can tentatively suggest
some criteria, as in [20]. One can evaluate how well an axiomatization solves a challenge problem by how
well it handles the problem itself and its variants. On this scale, this preliminary axiomatization seems solid:
it can handle all variants within the intended scope of the axiomatization. One can evaluate how useful an
axiomatization is by the generality and reusability of the core theories that it embodies. In this case, the
theory of expectation and surprise is entirely general, and ought to be easily reusable. The theory of joint
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plans extends an existing theory of communication and multi-agent planning. The existing theory itself is
much broader than most theories of multi-agent planning, and the extensions developed in this paper make it
still more general.

Beside these criteria, there are some intangible benefits of doing this sort of mid-sized axiomatization that
can transcend the criteria discussed above. Deep, narrow research into toy-sized problems rarely leads one to
consider the many aspects of reasoning that simultaneously permeate even everyday commonsense reasoning
problems: as we have seen, even a simplified version of the SBP involves the need to coordinate joint actions,
to make sure that one will have time available, to earmark money to ensure that one has really contributed
to a joint gift, and to reason about how all of these interact. There is ample opportunity, when working on
large-scale formalizations, for such considerations to enter into one’s consciousness, but virtually no time to
spend thinking about any of the subtleties; there is too much to be done and never enough time to do it.

This is the level of formalization that presents the opportunity to reason about the multitude of ways in which
various pieces of commonsense knowledge interact, and permits the time to develop one’s theories as fully
and as deeply as one can or would wish. The ultimate goal of such exercises may be the development of a
sizable body of commonsense reasoning that can be used to solve larger, more serious problems, but even
before that goal is met, the process itself captures some of the spirit of the original AI logicist enterprise.

References

[1] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment.Artificial Intelligence,
42(2–3):263–309, 1990.

[2] Ernest Davis. Inferring ignorance from the locality of visual perception. InProceedings of the 7th
National Conference on Artificial Intelligence(AAAI-1988), pages 786–790. AAAI Press/MIT Press,
1988.

[3] Ernest Davis.Representations of Commonsense Knowledge. Morgan Kaufmann, San Francisco, 1990.

[4] Ernest Davis. The naive physics perplex.AI Magazine, 19(3):51–79, 1998.

[5] Ernest Davis. The surprise birthday present problem, 2001. http://www-
formal.stanford.edu/leora/commonsense/birthday.

[6] Ernest Davis. A first-order theory of communicating first-order formulas. InPrinciples of Knowledge
Representation and Reasoning: Proceedings of the Ninth International Conference (KR2004), pages
235–245, 2004.

[7] Ernest Davis. Knowledge and communication: A first-order theory.submitted to Artificial Intelligence,
2004.

[8] Ernest Davis and Leora Morgenstern. A first-order theory of communication and multi-agent plans.
Journal of Logic and Computation, to appear, 2005.

[9] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.Reasoning About Knowledge.
The MIT Press, Cambridge, Massachusetts, 1995.

[10] Edmund L. Gettier. Is justified true belief knowledge?Analysis, 23:121–123, 1963.

[11] Steve Hanks and Drew V. McDermott. Nonmonotonic logic and temporal projection.Artificial Intelli-
gence, 33(3):379–412, 1987.



24

[12] Patrick Hayes. Naive physics I: Ontology for liquids. In Jerry Hobbs and Robert Moore, editors,Formal
Theories of the Commonsense World, pages 71–107. Ablex, Norwood, New Jersey, 1975.

[13] Patrick Hayes. The second naive physics manifesto. In Jerry Hobbs and Robert Moore, editors,Formal
Theories of the Commonsense World, pages 1–36. Ablex, Norwood, New Jersey, 1985.

[14] Jerry R. Hobbs. Artificial intelligence and collective intentionality (a reply to john searle). In P. Co-
hen, J. Morgan, and M. Pollack, editors,Intentions in Communication, pages 445–460. MIT Press,
Cambridge, Massachusetts, 1990.

[15] Sarit Kraus. Negotiation and cooperation in multi-agent environments.Artificial Intelligence, 94(1-
2):79–97, 1997.

[16] Fangzhen Lin. Embracing causality in specifying the indirect effects of action. InProceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, IJCAI-95, pages 1985–1993, 1995.

[17] John McCarthy and Patrick J. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editors,Machine Intelligence 4, pages 463–502. Edinburgh
University Press, Edinburgh, 1969.

[18] John L. McCarthy. Elaboration tolerance. InWorking Papers of the Fourth International Symposium on
Logical Formalizations of Commonsense Reasoning, Common Sense 98, 1998.

[19] Robert C. Moore. Reasoning about knowledge and action, 1980.

[20] Leora Morgenstern. Mid-sized axiomatizations of commonsense problems: A case study in egg-
cracking.Studia Logica, 67(3):353–384, 2001.

[21] Ernest Nagel.The Structure of Science. Harcourt, Brace, and Co., New York, 1961.

[22] Adam Pease, Vinay K. Chaudhri, Fritz Lehmann, and Adam Farquhar. Practical knowledge repre-
sentation and the DARPA high performance knowledge bases project. In Anthony G. Cohn, Fausto
Giunchiglia, and Bart Selman, editors,Proceedings of the Seventh International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR2000), pages 717–724, San Francisco, 2000.
Morgan Kaufmann.

[23] Raymond Reiter. The frame problem in the situation calculus: A simple solution (sometimes) and a
completeness result for goal regression. In Vladimir Lifschitz, editor,Artificial Intelligence and Mathe-
matical Theory of Computation: Papers in Honor of John McCarthy, pages 359–380. Academic Press,
1991.

[24] Raymond Reiter.Knowledge in Action. MIT Press, Cambridge, Massachusetts, 2001.

[25] Murray Shanahan.Solving the Frame Problem. MIT Press, Cambridge, Massachusetts, 1997.

[26] Murray Shanahan. An attempt to formalise a non-trivial benchmark problem in commonsense reason-
ing. Artificial Intelligence, 153(1–2):141–165, 2004.


