SNAP: An Action-Based Ontology for E-commerce Reasoning

Leora Morgenstern and Doug Riecken
IBM T.J. Watson Research Center
Hawthorne, NY 10532
leora@us.ibm.com, leora@steam.stanford.edu; riecken@us.ibm.com

FOMI 2005

Abstract

This paper presents SNAP, an e-commerce ontology developed for automated recommen-
dation systems for the domains of banking, insurance, and telephony. This ontology is distin-
guished by the fact that its core concepts come from commonsense theories of action; its support
of derived relations, which rely on composition of basic relations; and its close connection to a
sound (with respect to first-order logic) and efficient reasoning mechanism.

We present the basic concepts and relations of the ontology, and explain how derived relations
are built using the construction operators for regular expressions. We describe the knowledge
structure and reasoning mechanism that are used on instantiations of the ontology to produce
customer recommendations. We then discuss how this ontology has been used in practical
applications.

1 Introduction

This paper presents SNAP, an e-commerce ontology developed for an automated system for rec-
ommending products and services to consumers. The automated system was originally developed
for the domains of financial planning and banking and has since been extended for insurance and
telephony applications. The same underlying ontology is used in all applications.

This ontology has three distinguishing features:

1. In contrast to many e-commerce ontologies which are primarily organized around the concepts
of product and service, SNAP is based on a commonsense theory of agent interaction. Specifically,
it is built on basic concepts of standard AT theories of action, such as situations, needs (or goals),
and actions, and on various relations betwen these concepts. (SNAP stands for Situations, Needs,
Actions, and Products. As we discuss below, products and services are considered types of actions.)

2. SNAP has two sorts of relations: basic relations, and derived relations, which are built out of
basic relations using the construction operators of regular expressions. These derived relations allow
great expressivity. In particular, since composition is allowed in derived relations, SNAP has a
distinct expressive advantage over ontologies, such as DOLCE [8], built according to specifications
of Description Logics like CLASSIC [12], OWL [2].

3. SNAP is accompanied by an efficient reasoning algorithm that is sound with respect to first-order
logic.

This paper is organized as follows: In the following section, we discuss the fundamental elements of
our ontology, the concepts and the basic relations between these concepts. We then introduce derived
relations, which are expressed as compositions of the basic relations. We illustrate how derived
relations can be represented as regular expressions composed out of the elements of the ontology,

and show how we can use these derived relations to reason about customer recommendations and
other e-commerce related tasks.

2 Background: The Business Problem

The business problem for which this ontology Iwas developed is the automated recommendation of
products and services to consumers. We aimed to develop an ontology that was independent across
different business domains.

In line with the methodology outlined in [15], we began our work by constructing various scenarios
for product and service recommendations, and analyzed the reasoning needed to provide suitable
recommendations. For the domain of financial planning, the first domain that we examined, our
scenarios included a young couple planning to fund their children’s education, a middle-aged couple
planning to retire, and a wealthy person seeking to reduce his tax burden.

Our analysis of these scenarios, and conversations with domain experts led us to hypothesize that the
process of recommending products to consumers can best be thought of as a type of commonsense
reasoning. The best salespersons operate not by studying their product catalogues and seeing
which products they can offer to their customers, but by getting to know as much as they can
about their customers, and subsequently reasoning about their circumstances, the needs that these
circumstances engender, and the ways that they can help meet these needs. The salesperson succeeds
because meeting these needs usually entails buying some products. The reasoning process, however,
is primarily about the customer and his circumstances, rather than a set of products. This suggests
that there are some basic ontological constructs that carry across different domains.

Moreover, the reasoning involved is closely tied to reasoning about actions and plans. The salesperson
or customer service representative suggests a plan of action that meets his customer’s goals. He
must engage in hypothetical reasoning, and consider the short-term and long-term consequences of
particular actions (such as redistributing one’s portfolio).

We have set up our ontology so that it can support this sort of reasoning. To do this, we have chosen
as the fundamental concepts of our ontology the commonsense concepts of situations, fluents, needs,
and actions, rather than the products and services offered by a company. As we demonstrate below,
this choice leads to a flexible ontology and reasoning system.

3 Ontology: Basic Elements

The essential concepts in SNAP are taken from Al theories of action. We borrow from the situation
calculus and event calculus [9] [11] [6] the concepts of situations, fluents, and events (or actions),
and from theories of planning [4] and of desire and intention [3] the concept of a goal or need.

The concept of an agent is not explicitly addressed in this version of the ontology. Instead, each
concept in the ontology refers implicitly to agents: it is an agent who is in a particular situation, who
has a need, who performs an action. However, there is no representation of an agent as a distinct
concept. This is a suitable representation for our current purposes, since multi-agent planning is
absent or minimal.

Situations and fluents A situation [9] is a time slice of the world: it describes the way the world
is at a particular moment in time. We are interested in the facts that are true in a particular
situation. As in the situation / event / fluent calculus, we speak of a fluent f being true in
situation s—Holds(s,f)— to capture this notion.

Examples of fluents are an agent having minor children, an agent having a car, and an agent
owning a home. A single fluent generally matches, or holds in, many situations. (There are
many situations, for example, in which a particular person has children.) Indeed, a fluent can

be conflated with the set of situations in which the fluent holds. * Moreover, a single situation
can match many fluents, since many facts will hold true in any situation.

There are several important types of fluents, enumerated below.

Life Stages Life Stages characterize the fluents that describe some major stage of a person’s
life. Examples are being a child, being an adult, being a parent, and being a retiree.

Age Life Stages: Child, Teenager, Adult, Middle-Aged
Career Stages: Starting a job, Owning a business, Being a retiree
Family Stages: Parent, Parent of minor children, Empty nester

Demographics: These include such facts as marital status, income, and education.

Life Style: These include a person’s habits, such as living expensively, living frugally, or
taking frequent vacations. A life style actually holds over intervals of time; however, we
note that it is common to refer to a person’s life style at a particular moment in time.
For our purposes, therefore, we consider life styles to be fluents.

Obligations: Obligations include financial and non-financial commitments. Examples of fi-
nancial commitments include a person’s outstanding loans. Examples of non-financial
commitments include a commitment to take care of an aging parent and a guardianship.

Needs A need represents something desirable or useful which an agent does not have. It is quite
similar to the standard Al concept of a goal. An agent may not be aware that he has a
particular need. (Part of the task for an automated reasoning system is making these implicit
needs explicitly known to the customer.) Examples of needs include a need for a car or a need
for tax-free investments.

Events: An event is defined as a noteworthy happening or occurrence. Any event can be considered
either as an action or a behavior. Actions are those events which are planned; behaviors
are those events which are observed. A single event can be both a behavior and an action,
depending on the system context. If the event is actively planned by the system, it is considered
an action; if it is merely observed by the system, it is considered a behavior. This paper does
not focus on behaviors; therefore, we will often use interchangeably the terms event and action.
In addition, we will not discuss relations and reasoning types that apply to behaviors, such as
abduction.

Below are some types of important events.

Life events: These are noteworthy events that happen over the course of a person’s life.

Major life events: Examples include getting married, having children, buying a house,
starting a new job, and retiring.

Minor life events: Examples include buying a car or taking a vacation.

Eventualities: Eventualities are those life events which one must plan for. They are
usually negative. Examples include death, illness, disability, and the usual range of
disasters, such as fire, robbery, hurricanes, and earthquakes.

E-commerce Events: These are events that are directly connected to e-commerce transac-
tions.

Purchasing a Product or Service: An e-commerce transaction can involve several
different sorts of events. The most common of these is buying a product or ser-
vice. The events of buying a product or service can be organized hierarchically: e.g.,

IThis explains a certain looseness in notation: one often speaks of an event causing a situation, when one really
means that an event causes a fluent. If a fluent is equivalent to a set of situations, however, one can as well speak of
an event causing a set of situations.

getting a mortgage is a subtype of getting a loan; getting a loan is a subtype of per-
forming a bank transaction. There is, in fact, an isomorphism between the taxonomy
of product purchase events and the product taxonomy.

Receiving a Feature, Making a Selection, and Choosing an Option: A product

purchase generally has associated with it actions involving such features, selections,
and options. Features, selections, and options are distinguished in the following way.
One has no choice about the features that come with a product: they are given away
“for free.” For example, a mobile phone plan may come with free voice mail; one
need not do anything to get this feature. In contrast, one decides whether or not to
have an option. For example, one may decide to have windshield coverage as part of
one’s automobile insurance. Selections are similar to options, but are multi-valued
rather than binary. For example, one can decide whether to have a 15, 25, or 30-year
term for one’s mortgage.
There are events associated with features, options, and selections: one receives a
feature, makes a selection, and chooses an option. These events can be arranged
hierarchically. In the same way that there is a direct isomorphism between a product
taxonomy and the taxonomy of product purchases, there are direct isomorphisms be-
tween, respectively, feature and receiving-a-feature taxonomies; option and choosing-
an-option taxonomies; and selection and making-a-selection taxonomies.

3.1 Relations

We distinguish between basic relations and derived relations. Derived relations are composed from
concepts and basic relations using regular expression constructors, as described in section 3. Derived
relations correspond to reasoning types, as we discuss below .

3.1.1 Basic Relations

Except for the subsumption relation, all basic relations in SNAP have to do, in some way or other,
with action, planning, and the passage of time. We group the non-subsumption relations into three
types: (1) planning relations, which capture how goals or needs interact with situations, fluents, and
events; (2) causal relations, which capture the way the world changes through action or the passage
of time; and (3) constraint relations, which capture the static constraints, as in [14], among fluents,
among events, and between fluents and events.

A note about the label planning relations: It is of course the case that one needs to reason about
causation and static constraints while planning. Nevertheless, planning relations are distinguished
by the fact that they are used primarily for planning purposes, as opposed to causal and constraint
relations which are used, as well, to reason about prediction (what will happen in the future),
postdiction (what happened in the past / explanation), and how fluents are related.

We discuss these relations in more detail below.

Planning relations: There are four major types of planning relations.

Triggers(Fluent, Need): A fluent often engenders a particular need or goal which an agent
wishes to achieve. For example, the fluent of having minor children triggers the need to
provide for one’s children.

ServedBy(Need, Event): Intuitively, this relation holds when performing a particular ac-
tion would result in the goal or need being satisfied. For example, the need to improve
one’s health is served by the action of exercising; the need to provide for one’s children
is served by the action of purchasing life insurance.

Generates(Need, Need): This is similar to the planning notion of subgoal generation. One
need can generate, or give rise, to another. For example, the need to purchase a house
generally gives rise to the need to finance that purchase.

Anticipates(Fluent, Need): If a fluent holds in a particular situation, that can mean that
sometime down the line, a need may be triggered. For example, the lifestage of being an
adult anticipates the need to retire comfortably. This is different in nature than Triggers
in the sense that Triggers talks about a fluent that holds in the current situation and a
current actual need; Anticipates talks about a fluent that holds in the current situation
and a future likely need.

Causal-type Relations The relations discussed below have the flavor of causation, in the sense
that they describe relations that frequently develop along with the passage of time and/or the
occurrence of events.

Causes(Event, Fluent): This is the standard notion of causation, in which performing an
action causes some fluent to hold in the situation resulting from the action. For example,
buying a home causes the fluent of owning a home to be true.

DevelopsAfterTime(Life Stage, Life Stage): This relation holds between life stages. Of-
ten lifestages lead to other lifestages simply through the passage of time. For example, a
baby becomes a child after the passage of some time; likewise a child becomes an adult
through the passage of time.

LeadsTo(Life Event, Life Event): Often one event will frequently lead to another. For
example, when one switches jobs to a new locale, one will frequently, but not necessarily,
move. Similarly, when one gets married, one frequently moves.

|1
| All concepts 1
Constrain ﬂuentI | Constrain | ICauses
'__1 ! i \ | Constrain-event

L :‘ i [-
iggers
Fluents —— Served By |
Sets of Situations Eﬂl_dpiles Needs]— - Events

[

U L
Demographics -
L —[Life Events l ’ E-commerce Events l
Leads to
Lifestyle
<— Events Related
Obligations To Product Purchase:

(e }—
Life stages _J — Product Purchase
Dévelops Eventualities I

after time | Has feature

= Receiving features

|Has selection

[~ — | Making selections
| Has option N -
— — —» Choosing options |,_|

Figure 1: The schematic ontology diagram for SNAP. Subsumption relations are shown with solid
lines; non-subsumption relations are shown with dashed lines.

Constraint-type Relations: The relations discussed below have the flavor of domain constraints
[7] [14] rather than causation. However, these constraints do not necessarily hold only between
fluents ; they can also hold between two events, or between events and fluents.

Constrain-fluent (Fluent, Fluent): This is similar to the standard notion of domain con-
straint. When one fluent holds, another may be constrained to hold as well. For example,
in certain circumstances, if the fluent of being above the age of 70 holds in a situation,
tht can entail that the fluent of being a retiree holds in the situation as well.

Constrain(Event, Fluent): The occurrence of an event may constrain a fluent to be the
case, event though the event does not cause the fluent to hold. For example, if one takes
out a loan to finance one’s business that means that one must own a business to start
with or have detailed plans to start a business.

Constrain-event(Event, Event): The occurrence of one event may constrain other events
to take place (concurrently or otherwise). For instance, if one takes out car insurance,
then one must have at one point bought a car, or one must be buying a car now.

Relations having to do with product purchases: An important subrelation of the

Constrain-event relation specifies the connection between product purchases and re-
ceiving features, making selections, and choosing options. Specifically, when one
purchases a product, one is constrained to receive certain features (e.g., for travel
insurance, free roadside assistance), to make certain selections (e.g., the size of one’s
deductible), and to decide on certain options (e.g., coverage for skiing-related acci-
dents).
Because in common discourse we will conflate the hierarchies of product purchase,
receiving features, making selections, and choosing options with the hierarchies of
respectively, products, features, selections, and options, we will denote these relations
as, respectively, Has Feature, Has Selection, and Has Option.

Figure 1 is a schematic ontology diagram showing the basic ontology types and relations between
these types.

4 Derived Relations and Reasoning Types

From the point of view of practical commonsense reasoning, the most important relations in the
ontology are the derived relations. These are the relations that are defined the basic building blocks
of the ontology; they correspond to types or reasoning, in a sense to be made precise below.

We add to the ontology a set of definitions li = di, where each li is the name or label of the derived
relation and di is a derived-relation expression (DRE). We define DREs as follows:

Let NT and LT be, respectively, the set of concept types and basic relationship types. (NT and LT
stand for node types and link types.) A DRE is a regular expression over the alphabet NT U LT
in alternate concept-relation (node-link) form: it begins and ends with a concept type and concept
types and relation types alternate. We have the following formal definition:

e if n € NT and [€ LT then [- n is an LT-pair

o if £1,22 are LT pairs, then z1 - 22, z1|z2 and (x1)* are LT pairs

o if z is an LT pair and n € NT then n -z is a DRE

When no ambiguity results, we will drop the - from DREs.

A DRE corresponds to a path through the graph or network induced by an instance of the ontology.
Some examples follow. For ease of reading, we will use the term Product instead of Product Purchase.

Example 1: R1 = Fluent Triggers Need ServedBy Product . R1 is thus the composition of the
Triggers and ServedBy relations. RI is a very rudimentary Recommendation relation. It specifies

that if some fluent triggers a need, and that need is served by some product (purchase), then it
is reasonable to recommend that product (purchase) for an agent in the situation where the fluent
holds.

Example 2: R2 = (LifeStage (DevelopsAfterTime LifeStage)* | Fluent) Triggers Need (Generates
Need)* ServedBy Product (Subsumes Product)*. This is useful for reasoning about suitable products
to recommend for the needs triggered by the fluents that hold in one’s current and future situations.
We call this relation RecommendFromFluent.

Example 3: R3 = Product Causes Fluent Triggers Need (Generates Need)* ServedBy Product (Sub-
sumes Product)*. R31is a type of cross-sell relationship. It corresponds to determining what fluents
are caused by a product purchase, and then determining what products might be recommended for
that circumstance. For example, purchasing a mortgage results in a situation in which one has large
financial obligations each month. Such large obligations may trigger several needs, such as a need
for protection to ensure that one will be able to make the payment, and a means for making the
payment with as little hassle as possible. These needs, in turn, are served by, respectively, mortgage
insurance and automatic check payment services. Thus, one can reason that reasonable cross-sells
for mortgage products are mortgage insurance products and automatic check payment services.

The derived relation R2 or RecommendFromFluent is shown in Figure 2. Note that the path Has
minor child - Triggers - Need to fund child’s education - ServedBy - Tax Deferred Savings Products -
Subsumes - Whole Life matches the DRE on the right-hand side of R2. Intuitively, this means that
one can add the link RecommendFromFluent between the first and last nodes on the path, that is,
between Has minor child and Whole Life. In other words, when we find a path that matches a DRE,
we can add that derived relation as a link between the first and last nodes in a path. Finding this
path corresponds to reasoning that the relation RecommendFromFluent holds between the fluent
Has minor child and the product (purchase) Whole Life, meaning that Whole life insurance is a
suitable recommendation for someone who has a minor child.

In previous work, we have shown that finding paths that correspond to these predefined regular
expressions is indeed sound with respect to first-order logic. These results are briefly summarized
below.

4.1 Reasoning with SNAP: Enhanced Semantic Networks

In previous work [10], we introduced the Enhanced Semantic Network or ESN. The ESN differs from
standard semantic networks in its ability to characterize a wide range of sound reasoning. 2 In this
section, we define ESNs, define entailment within an ESN, and discuss soundness.

Definition: An Enhanced Semantic Network is a tuple (NT, LT, SN, RT, RR, RGX, CLT, f) where
NT is a set of node types; LT is a set of link types; SN is a set of nodes, each associated with a
member of NT; RT € NT x LT x NT is a set of relationship types; RR is the set of all nodes and links
in the ESN; RGX is a set of regular expressions over the alphabet NT'U LT, in alternating node-link
form, as defined in the previous section, intuitively comprising the set of reasoning types that are
permitted within the ESN; CLT C LT is a set of conclusion link types, intuitively, representing the
conclusions one can draw when performing valid reasoning within the ESN; and fis a function from
RGX to CLT, giving the mapping between the regular expressions that define the reasoning types
and the conclusions that one can draw.

The correspondence between ESNs and instances of an ontology in SNAP are obvious. NT and
LT give the concept (node) and relationship (link) types; SN gives the actual set of nodes in an
instantiated ontology; RR gives the links between these nodes; RGX gives the DREs; CLT gives the

2Semantic networks can be divided, roughly, into two groups: those that have a formal semantics and those that
do not. Those that have a formal semantics, such as standard inheritance networks and description logics [1], limit
expressivity and reasoning power, sometimes severely: even relatively expressive DLs like OWL [2], for example, do
not permit composition among relations. Those that do not have a formal semantics do not of course in general
permit sound reasoning [16].

¥

Is cash rich

Has minor child .
f Triggers
Triggers

: |
Triggers | Need tofund
- | child’s education
Need to provide \
for child 1 vedBy | ServedBy

ServedBy /' \savedBy \\ Tax-deferred | Subsumes

Recommengl | S3vings products \

From | College

A ! Subsumes savings products
]
Subsumes \I(
Whole life Coverdell

Causss accounts Roth IRA

Figure 2: ESN EI1. Since the path between Has minor child and Whole life (indicated by heavy
arrows) is legal, one can conclude that the RecommendFromFluent relation holds between the first
and last nodes of that path.

derived relation names.

Figure 2 shows an example of an ESN.

4.2 Entailment in an ESN

What differentiates an ESN from an ordinary SN is its notion of entailment. Entailment within an
ESN is defined in terms of legal paths. In turn, legal paths are defined with respect to a predetermined
set of regular expressions, the RGX of the ESN. A path is legal iff it matches some element r of
RGX. If a path is legal, one can augment the ESN by adding a link between the first and last nodes
of the path, where the link is f(r). Furthermore, we say that the new triple in the network is a
consequence of the ESN. Entailment is then defined as closure under this notion of consequence.

The formal definitions follow:

Definition(Paths): An ESN path 7 is an alternating sequence of nodes and links, beginning and
ending with a node.

Definition (Legal paths): 7 is a legal path if 7 is a path and 7 matches some element (regular
expression) of RGX.

We introduce the following notation to express augmenting an ESN by adding links and possibly
nodes:

Definition (Augmentation of an ESN): If T'is a set of tuples (nq, [y, ny) then EUq,4T represents
the ESN obtained by replacing RR(E) with RR(E) U T.

Note that E Ugyg 1" is also an ESN.

Definition (One-step entailment): If F is an ESN-I, Cons-1-step(E) = E Ugyg {(ni, f(7),n5) | ™
is a legal path in F and ris a regex in RGX matching 7}.

Thus, 1-step entailment corresponds to adding to the ESN-I a link of type f(r) between nodes n;
and n;.

We can now define Cons(E), the consequences of an ESN, as the ESN closed under one-step entail-
ment.

Definition (Closure under one-step entailment):
Cons(E) is the smallest set satisfying the following properties:

1. Cons-1-step(E) C Cons(E)

2. Cons-1-step(Cons(E)) = Cons(E).

We then define entailment in an ESN F as follows:

Definition (Entailment): E Eggsny (ng,ly,) <= (nq, 1y, n) € RR(Cons(E))

That is, a path of length 3 is entailed by an ESN FE if the corresponding triple exists in the ESN
representing the consequences of E.

Returning to the ESN E1 in Figure 2: Suppose RGX of FE1 contains the regular expressions R1... R3
defined in section 3.1. Furthermore, suppose that f(R2) is equal to the derived relation /reasoning
type RecommendFromFluent. Since the path Has minor child - Triggers - Need to fund child’s
education - ServedBy - Tax Deferred Savings Products - Subsumes - Whole Life is a legal path
matching RecommendFromFluent, therefore, E1 Egsny (Has minor child, RecommendFromFluent,
Whole Life). Thus, one can augment the ESN with the link RecommendFromFluent between the
nodes Has minor child and Whole Life.

In our previous work, we have shown that reasoning within an ESN using this notion of entailment
is sound with respect to first-order logic. The proof is by construction —we provide a translation
from an ESN into a subset of FOL— and induction on the connectives in the regexes of the ESN.
However, reasoning is much more efficient in the ESN than in FOL, since the core of the reasoning
depends on recognition of regexes.

5 SNAP in Practice

5.1 Using Snap in Business Domains

We have used the SNAP ontology in a variety of domains including banking, financial planning,
insurance, and telephony. We developed the basic ontology prior to any customer engagement,
through an analysis of the financial planning domain, using public, non-proprietary sources, includ-
ing textbooks, publicly available product and service catalogues of various companies, and various
materials on the web. Using these resources, we developed a generic ontology for financial planning.

The resulting ontology contained all the basic constructs (fluents, needs, actions) discusssed in
Section 3. The instantiation of the ontology contained two distinct though closely intertwined parts:
the domain-independent concepts and relations, and the domain-specific concepts and relations.
Examples of the former included the hierarchy of age life stages and family stages. Examples of the
latter included the hierarchy of types of life insurance and college savings plans.

Our initial customer engagement was with a multi-national bank, for the development of a prototype
recommendation system for mortgages. A significant part of the project involved the development of
the ontology. (Other parts included the implementation and the integration with a dialogue system;
see [10]). This was accomplished using a combination of knowledge engineering technology (see, e.g.,
[13]) and the methodology outlined in [15], section 6.1, modified to take account of the fact that we
were iteratively expanding the ontology.

In collaboration with domain agents, we constructed a set of motivating scenarios. > We expanded

3Note that the second step of Figure 5 of [15], the formulating informal competency questions, was much abbreviated
as we expanded the ontology, since we had so much formal terminology already in place.

the formal ontology as necessary, characterized the reasoning types necessary to accomplish the
desired recommendation tasks, formally specified the relations between the elements of the ontology,
and showed that the resulting ontology could indeed support the necessary reasoning tasks.

This process was repeated as we extended the preliminary recommendation system to other do-
mains, specifically insurance (travel, car, income, mortgage) and small business loans. We are now
working with a second customer, in the domain of telephony, to design and develop a system for the
recommendation of cell phone service and equipment, and have repeated the process in this case as
well.

These ontologies lie at the core of the prototype recommendation systems that we have developed.
These prototypes are scheduled for deployment in the near future.

5.2 Evaluation

In spite of the plethora of work relating to evaluating ontologies 4, there exists no definitive standard
for ontology evaluation. This is due partly to the fact that there is no consensus on what is actually
meant by the term “ontology” and partly to the fact that one can evaluate an ontology in many
different ways, not all of which are relevant to a particular task or application. °

Ontology evaluation may also be limited by the size of one’s ontology and the maturity of the
projects that use this ontology. In general, one needs a large number of test cases in order to
perform evaluations; in our work, which is still in preliminary stages, these do not yet exist.

We believe that for this work, the following evaluation metrics are particularly relevant: Adequacy
of capture of domain knowledge; Usefulness of ontology for application; and Reusability of core
ontology in iterated expansions of ontology. We can make the following preliminary remarks for
each of these categories:

(1) Adequacy of capture of domain knowledge: We make two remarks here: First, we have succeeded
in using our ontology to represent the knowledge needed for our initial test scenarios, as well as for
sets of new scenarios that have since been introduced. Second, the customer, shown the ontology
in a natural language form, as well as in graphical form, has commented that we have not only
captured their business, but that we have helped them understand it better than before.

(2) Usefulness of ontology for application: The ontology is a central part of the recommendation
system. Indeed, reasoning about recommendations using this ontology, augmented with the proper
reasoning types, has proved to be a rather straightforward task. Reasoning reduces to finding a legal
path in the graph induced by the ontology. As discussed in [10], we have also used the ontology in the
dialogue portion of the recommendation system: paths in the network are used to guide questions
and to explain recommendations.

(3) Reusability of core ontology in iterated expansions of ontology: As we have examined new domains
and expanded our ontology, we have noticed the following phenomenon: Naturally, we must build
new product, feature, selection, and option hierarchies for each new domain. However, there is a core
ontology — the portion of the ontology that we labelled as domain-independent — that has been
virtually unchanged. The core model — of how agents live, grow, and interact — has remained
substantially the same. Moreover, the core model is relatively small, numbering less than a thousand
nodes. Indeed, some portions of the model, such as life stages, major life events, and minor life events
are very small, measuring only a few dozen nodes each. We believe that this indicates that there
is a relatively small core of commonsense reasoning that can be re-used for a variety of business
domains, and that viewing the core in terms of standard AI theories of action has proved to be a

4[5] gives a good survey of this area.

5For example, the metrics of precision and recall are very important for Information Extraction but not particularly
relevant for applications requiring deep reasoning; thus, a method of ontology evaluation that gives great importance
to precision and recall would be suitable for our ontology. Similarly, evaluation methods meant to be used to evaluated

ontologies generated through text mining are not necessarily suited to evaluating hand-constructed ontologies.

10

fruitful and robust approach.

Finally, we note that we have throughout followed the methodology of [15], which incorporates
evaluative techniques at various points during the ontology creation process.

6 Future Work and Concluding Remarks

We began this work with the hypothesis that much e-commerce reasoning is largely general com-
monsense reasoning, rather than special purpose reasoning tailored to a particular domain. Our
experience with multiple domains has largely borne this out. Our initial application for a customer
was in a subdomain of banking, for recommending mortgages. We have since developed new tracks
of our recommendation system for income, travel, and auto insurance, small business loans, and cell
phone service and equipment. As discussed above, our experience has been that most of the core
ontology remains unchanged for each new domain introduced, which gives confiming evidence for
our hypothesis.

We are planning to extend our work in the following ways. First, we are currently expanding our
ontology so that it can support explicitly representing and reasoning about multiple agents. Second,
we are planning to focus in greater detail on issues of abduction—determining potential causes given
an observed customer behavior. We believe that our underlying ontology of situations, fluents, needs,
and events is sufficiently powerful to handle abduction. In particular, we have constructed regexes
that correspond to very simple cases of plan recognition. Further research is needed to expand
and validate these results. Third, we would like to explore connections with other foundational
ontologies, such as DOLCE.

References

[1] Franz Baader, Diego Calvanese, Deborah McGuinness, and Peter Patel-Schneider. The De-
scription Logic Handbook. Cambridge University Press, 2003.

[2] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah McGuinness, Pe-
ter Patel-Schneider, and Lynn Andrea Stein. OWL web ontology language reference, 2004.
http://www.w3.org/TR/owl-ref/.

[3] Michael E. Bratman. Intentions, Plans, and Practical Reason. Harvard University Press, 1987.

[4] Richard Fikes and Nils J. Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2(3-4):189-208, 1971.

[5] Jens Hartmann, Peter Spyns, Alain Giboin, Diana Maynard, Roberta Cuel, Mari Carmen
Suarez-Figueroa, and York Sure. Methods for ontology evaluation, 2005. KnowledgeWeb De-
liverable D1.2.3.

[6] Robert A. Kowalski and Marek J. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67-95, 1986.

[7] Fangzhen Lin. Embracing causality in specifying the indirect effects of action. In Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI-95, pages
1985-1993, 1995.

[8] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, Alessandro Oltramari, and
Luc Schneider. The wonderweb library of foundational ontologies: Preliminary report, 2003.
WonderWeb Deliverable D17.

11

[9]

[13]
[14]
[15]

[16]

John McCarthy and Patrick J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 463—
502. Edinburgh University Press, Edinburgh, 1969.

Leora Morgenstern, Erik Mueller, Doug Riecken, Moninder Singh, and Leiguang Gong. FEn-
hanced semantic networks: Hybrid knowledge structures for reasoning, 2004. IBM Research
Report RC23436.

Raymond Reiter. Knowledge in Action. MIT Press, Cambridge, Massachusetts, 2001.

Lori Alperin Resnick, Alex Borgida, Ronald Brachman, Charles Isbell, Deborah
McGuinness, Peter Patel-Schneider, and Kevin Zalondek. CLASSIC description
and reference manual for the COMMON LISP implementation, version 2.3, 1995.
http://www.ida.liu.se/ TDDA13/labs/desclogic/manual.pdf.

Mark Stefik. Introduction to Knowledge Systems. Morgan Kaufmann, San Francisco, 1995.
Michael Thielscher. Ramification and causality. Artificial Intelligence, 89:317-364, 1997.

Michael Uschold and Michael Gruninger. Ontologies: Principles, methods, and applications.
Knowledge Engineering Review, 11(2), 1996.

William Woods. What’s in a link: Foundations for semantic networks. In Daniel G. Bobrow and
Alan Collins, editors, Representation and Understanding: Studies in Cognitive Science, pages
35-82. Academic Press, New York, 1975.

12

