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Abstract

In this paper we describe the use of the rewriting logic based Maude tool to model and
analyze mammalian signaling pathways. We discuss the representation of the underlying
biological concepts and events and describe the use of the new search and model checking
capabilities of Maude 2.0 to analyze the modeled network. We also discuss the use of
Maude’s reflective capability for meta modeling and analyzing the models themselves. The
idea of symbolic biological experiments opens up an exciting new world of challenging
applications for formal methods in general and for rewriting logic based formalisms in
particular.

1 Introduction

In this paper we describe the use of the rewriting logic based Maude tool [7,6] to
model and analyze mammalian signaling pathways. A preliminary report on this
work appeared in [16]. Here we present the Maude model in more detail, and de-
scribe the use of the new search and model checking capabilities of Maude 2.0 [6]
to analyze the modeled network. We also discuss the use of Maude’s reflective ca-
pability [4] for metamodeling and analyzing the models themselves. This turns out
to be quite important for managing complex models. The naturalness and relative
ease (for biologists) of building and using the Maude models of signaling pathways
is very encouraging. The idea of symbolic biological experiments opens up an ex-
citing new world of challenging applications for formal methods in general and for
rewriting logic based formalisms in particular.

Biological Signaling Pathways.
The tremendous growth of genomic sequence information combined with tech-

nological advances in the analysis of global gene expression has revolutionized
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research in biology and biomedicine [43]. However, the vast amounts of exper-
imental data and associated analyses now being produced have created an urgent
need for new ways of integrating this information into theoretical models of cellular
processes for guiding hypothesis creation and testing. Investigation of mammalian
signaling processes, the molecular pathways by which cells detect, convert, and in-
ternally transmit information from their environment to intracellular targets such as
the genome, would greatly benefit from the availability of such predictive models.
Although signaling pathways are complex, fundamental concepts have emerged
from contemporary research indicating that they are amenable to analysis by com-
putational methods. For example, most signaling pathways involve the hierarchical
assembly in space and time of multi-protein complexes or modules that regulate the
flow of information according to logical rules [22,28]. Moreover, these pathways
are embedded in networks having stimulatory, inhibitory, cooperative, and other
connections to ensure that a signal will be interpreted appropriately in a particular
cell or tissue [18,36].

Modeling Cellular Signaling Networks.
Various models for the computational analysis of cellular signaling networks

have been proposed involving approaches that incorporate rate and/or concentra-
tion information to simulate responses to specific stimuli [27,44,2]. Alternatively,
networks consisting of signaling pathway targets (genes) are modeled using dif-
ferential equations to represent changes in the concentrations of both the targets
and their pathway components (reviewed in [42]). The objectives here include pre-
diction of transcription signal sequencing, gene expression and understanding of
regulation mechanisms, including feedback and multistable switches. Models are
used to test hypotheses about elements that are not known experimentally.

C. Tomlin’s group at Stanford uses techniques from control theory to analyze
the dynamics of reactions that control signalling processes and determine possible
equilibrium states [19]. They are able to simulate moderate size arrays of cells
using fixed parameters for switching thresholds and to determine analytic rela-
tions between possible equilibrium states and threshold values for one and two
cell systems. An alternative approach is to apply abstraction techniques to hybrid
systems models of metabolic reactions [30]. This gives finite state models that are
then subjected to model checking. In [34] biological decision circuits (circuits with
feedback mechanisms) are modeled using hybrid logical/kinetic models of circuit
elements.

The HELIX project at INRIA has developed the GNA (Genetic Network Ana-
lyzer) tool for modeling and simulation of genetic regulatory networks [10]. Mod-
els are specified by giving upper and lower bounds for protein concentrations and
reaction rates. The tool computes a qualitative state transition graph from which
possible qualitative behaviors can be read.

Work by B. Palsson (UCSD) and colleagues uses constraint based Flux bal-
ancing techniques to model genome scale metabolic pathways [12,37,9]. A long
term objective is to specify metabolic phenotypes that will be expressed by an or-
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ganism under different environmental conditions. The basic idea is to start with
a metabolic network—a graph whose nodes are the metabolites of the modelled
system, and whose arrows represent fluxes between these metabolites (arrows may
start or end externally). The graph is turned into a system of symbolic differential
equations using variables where rate data is unknown. Constraints on the variables
are added for known or predicted relations. (Currently regulation is not modeled.)
Linear programming techniques (flux based analysis) are used to determine the
space of solutions states, and to find optimal solutions relative to objectives such
as growth or by-product secretion. The results say what the cell can not do, and
give possibilities for what it might do—hypotheses to be tested in laboratory ex-
periments.

A number of tools designed for hardware or sofware analysis have been applied
to biological problems [31]. It is interesting to contrast objectives: in the case of
software/hardware systems the objective is typically validation or verification of
designs, algorithms, implementations; while in the case of biological systems, tools
are used for hypothesis generation and testing in models of systems that are usually
only partially known.

The pathFinder tool [32], developed for static timing analysis of digital designs
has been used to determine families of proteins that will disconnect a target from a
source, by enumerating all paths between them. The tool does not work on networks
with feedback (cycles). Baysian nets have been used to find statistical dependencies
from massive gene expression array data [41]. An analog of the SPICE hardware
simulator, BioSpice, is being developed for numerical simulation of biological net-
works [1]. The � -calculus has been used to represent and forward-simulate a small
signaling pathway [38].

Computational predictions of hundreds of metabolic pathways have been made
in sequenced genomes using tools developed by Karp’s group at SRI [25,24,26],
and by the KEGG [23] and WIT [35] groups. The PathoLogic program [26] makes
predictions by anology to experimentally known pathways using AI techniques.
This tool set also includes a tool for animating biological pathways in the EcoCyc
database [39].

Simulations using in silico models founded on kinetic measurements of signal-
ing pathways or networks are important for achieving a detailed understanding of
the biochemistry of signal transduction. However, the development of such models
is impeded by the great difficulty in obtaining experimental data. The stochastic
nature of cellular scale populations of signaling molecules gives additional compli-
cations [31,33]. Moreover, new computational methods will be needed to overcome
of complexity of simulating and analyzing such detailed models [17].

Our approach focuses on developing highly abstract qualitative models of
metabolic and signaling processes that can be used as the basis for analysis by pow-
erful tools, such as those developed in the formal methods community, to study a
wide range of questions.
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2 Executable Models in Symbolic Systems Biology

The Maude case study presented here together with the EcoCyc work [25] and other
initial case studies [30,14] applying formal modeling techniques to cellular path-
ways is a first step toward developing a new science of Symbolic Systems Biology.
This new science could provide new capabilities for biologists through power tools
that enable the generation of novel inferences about relations among biological en-
tities. These tools would facilitate our understanding of complex biological systems
and accelerate research to test hypotheses concerning their operation in vivo.

In our approach, rewrite rules describe local change that could occur when an
instance of the left-hand side of the rule exists in a modeled system. Rewriting logic
allows reasoning about possible complex changes given the basic changes specified
by the model. These complex changes can be concurrent; that is, different parts
of a compartment can change simultaneously and independently. Furthermore, the
changes can be multi-step, allowing reasoning about possible future states of the
system. Thus, under very reasonable assumptions rewrite theories can be executed
in Maude to describe a biological signaling process over time according to a sym-
bolic model, and can be formally analyzed to reason about properties of the states
reachable from an initial state.

Given an executable model such as that described above, the path graph of
a given initial state is a graph whose nodes are the reachable states and whose
edges are the rules connecting them. Paths through the graph then correspond to
possible ways a system can evolve. An execution strategy picks out a particular path
among those possible. In such a model, there are many kinds of computation that
can be carried out, including: static analysis, forward simulation, forward search,
backward search, explicit state model checking, and meta analysis.

Static analysis allows one to examine the structure of the model and to under-
stand how the elements are related and organized (the sort structure). Static analysis
also provides a means to check for inconsistencies or ill-formed declarations and to
look for missing information.

Forward simulation runs the model from a given initial state using a built-in
strategy either for a fixed number of steps, or until no more rewrites apply. This is
extremely fast, and very useful for initial exploration.

Forward search is a breadth-first search of all paths through the transition graph
for a given initial state. It will find ALL possible outcomes from a given initial state.
Search can also be constrained to find a possibly limited number of states satisfying
a given property.

Backward search runs the model backwards. For models satisfying certain con-
straints, backwards search can answer the question: “From what initial states can
we get to this state?”. For example it can be used to find all possible precursors to
a particular checkpoint.

Explicit state model checking expands the collection of properties that can be
investigated. Search concerns only properties of individual states. Model checking
also considers properties of paths. For example, we can ask: “If we reach a state
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that satisfies
�

then do we always later reach a state satisfying � ?”
Meta analysis allows us to reason about the models themselves. Essential fea-

tures of models can be abstracted to form families of related models, allowing us
to work with uncertainty about reactions. Starting with a base set of known reac-
tions, different instantiations of sets of reactions can be explored. For example, we
can search for models where a given path property is true in a given initial state.
In addition, rules themselves can be abstracted into families of rules, each fam-
ily corresponding, for example, to a particular type of reaction, such as activation,
inhibition, or transduction.

3 The Signaling Path Model BP

In this section we describe a Maude model, BP (BioPathways), of a major receptor-
mediated pathway in mammalian cells [20], focusing on the part centered around
the epidermal growth factor receptor (EGFR). BP formalizes reaction data carefully
curated from the literature by expert biologists. Currently BP includes more than
650 proteins and more than 500 rules describing possible reaction steps.

In subsection 3.1 we describe how the relevant biological concepts are rep-
resented as a (membership) equational theory. In subsection 3.2 we describe the
representation of the different types of signaling events using rewrite rules. In sub-
section 3.3 we give some example analyses focusing on two different initial states.
First we will consider a small example corresponding to part of a signaling network
concerned with regulation of novel protein kinase C � (PKCe) by phosphorylation.
Here the number of reachable states is small and one can examine the path graph in
some detail. The second example involves the larger EGF signaling network. Here
the reachable states is large (39992) and one explores the model by selective search
and by model checking different initial configurations. In subsection 3.4 we discus
the use of reflection and metamodeling.

3.1 Biological sorts and elements

Two basic sorts of interest are Protein and Chemical (non-biological entities
such as calcium ion Ca++). We introduce a sort Thing to collect together the
various basics sorts from which more complex components are formed. These sorts
together with examples of their specific members, are declared by the following:

sorts Protein Chemical Thing .
subsorts Protein Chemical < Thing .
ops EGFR EGF PIP3 Pdk1 PKCe : -> Protein .
ops Ca++ : -> Chemical .

The keywords op and ops are used to declare operators from a list of domain
sorts into a range sort. In both of the examples above, the list of domain sorts
is empty, indicating that the declared operators are constants. Thus EGFR, EGF,
PIP3, Pdk1, and PKCe are declared to be a constants of the sort Protein.

Several important concepts from cellular biology are needed to model the sig-
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naling networks. They include protein modification; protein association; and cellu-
lar compartmentalization.

Protein Modification.
BP includes a comprehensive algebra of protein modifications. Here we show

only a small part that is relevant for the later examples.

sorts Modification ModSet .
subsort Modification < ModSet .
ops GDP GTP act deact : -> Modification .
op none : -> ModSet .
op _ _ : ModSet ModSet -> ModSet [assoc comm id: none] .
op [_-_] : Protein ModSet -> Protein [right id: none] .

There are constants GDP, GTP, act, and deact of sort Modification which
are abstractions of classes of modification with similar effect as regards signal-
ing. ModSet is the sort of multisets of modifications, formed from singletons
(expressed by the subsort declaration) by multiset union (represented by juxtapo-
sition). none is the empty modification set. Sets of modifications are applied to
proteins using the operator [_-_]. For example [EGFR - act] represents the
activated form of EGFR.

Protein Association.
Signaling proteins commonly associate to form functional complexes [29]. This

important phenomenon is algebraically represented by the following declarations:

sort Complex .
subsort Complex < Thing .
op _:_ : Thing Thing -> Complex [comm] .

Thus each protein or other thing is a singleton complex and two such complexes can
be associated by the ”:” operator to obtain a multicomponent complex. Complexes
are also considered to be Things. An example is the inhibitory complex:

(IqGap1 : (Ecadherin : bCatenin))

that describes IqGap1 sequestering Ecadherin and bCatenin so they cannot
participate in other reactions.

Protein Compartmentalization.
In eukaryotic cells (cells with a nucleus) proteins and other molecules exist

in complex mixtures that are compartmentalized [22]. These compartmentalized
mixtures (here termed Soup) are algebraically represented by the following decla-
rations:

sorts Soup Enclosure MemType .
subsort Thing < Soup .
op empty : -> Soup .
op _ _ : Soup Soup -> Soup [assoc comm id: empty] .
ops CM NM : -> MemType .
op � _|_ � _ ��� : MemType Soup Soup -> Enclosure .
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An Enclosure has a membrane part and an interior, each with its own constituent
soup. A MemType is used to specify a particular membrane type such as the cell
membrane (CM) or the nuclear membrane (NM). Formally, a soup is multiset of
things. The multiset union operation models the presumed fluid or dynamic nature
of some subcellular compartments where order in which molecules exist in the
soups does not matter. The term

� CM| cm:Soup PIP3 [Pdk1 - act] � cyto:Soup PKCe � �
represents a cell containing the chemical PIP3 and the activated protein [Pdk1 -
act] in the cell membrane and the protein PKCe in the cytoplasm (cell interior).
The notation cm:Soup is a variable declared on the fly, with name cm and sort
Soup. The variables cm:Soup and cyto:Soup stand for the remaining cell con-
tents. Finally, we declare a sort Dish that serves as a top-level soup, and a container
for carrying out in silico experiments.

sort Dish .
op PD : Soup -> Dish .

3.2 Biochemical events

To model biochemical events such as signaling processes, we use the dynamic part
of a rewrite theory, rewrite rules, to express biochemical processes or reactions
involving single or multiple subcellular compartments. For example, the following
text describes the first step in the activation of the EGFR signaling pathway, the
binding of EGF to the EGFR [40] “Activated Erk1 is rapidly translocated to the
nucleus where it is functionally sequestered and can regulate the activity of nuclear
proteins including transcription factors.” In Maude syntax, this signaling process is
described by the following rewrite rules:

rl[410.Erk1/2.to.nuc]:
� CM | cm:Soup � cyto:Soup [Erk1 - act] � NM | nm:Soup � nuc:Soup � ��� �
=>

� CM | cm:Soup � cyto:Soup � NM | nm:Soup � nuc:Soup [Erk1 -
act] � ����� .
rl[438.Erk.act.Elk]:
[?Erk1/2 - act] Elk1 => [?Erk1/2 - act] [Elk1 - act] .

Rule 410 describes the translocation of activated Erk1 from the cytoplasm to
the nucleus. Rule 438 describes the activation of Elk1 (a transcription factor) by
activated Erk1. Note that rule labels in BP consist of a number followed by an
abbreviated description, which allows a meaningful description of reaction paths
using just rule labels. We typically refer to the rule using only the number. We
also adopt the convention that symbols beginning with ? are variables with sort
named by omitting the ? (declared somewhere in the module). Thus ?Erk1/2 is
a variable of sort Erk1/2 (a subsort of Protein containing proteins Erk1 and
Erk2).

As another example, the following rule represents the experimental result [3]
that, in the presence of PIP3, activated Pdk1 recruits PKCe from the cytoplasm
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to the cell membrane and activates it.

rl[757.PIP3.Pdk1.act.PKCe]
� CM| cm:Soup PIP3 [Pdk1 - act] � cyto:Soup PKCe � �
=>

� CM| cm:Soup PIP3 [Pdk1 - act][PKCe - act] � cyto:Soup � �
[metadata "cite = 21961415"] .

A rule declaration may also contain additional information, including a metadata
attribute. The metadata attribute allows rules to be annotated with arbitrary infor-
mation that is ignored by the core rewriting engine, but available for use by met-
alevel operations. In the above rule, the metadata "cite = 21961415" gives
the Unique Identifier for the MedLine database citation as justification for the rule.
Other metadata for biological network rules include reaction rate or concentration
data, other forms of literature citations, database links, and confidence ratings.

Figure 1. shows a representation of part of the PKC network that we have mod-
eled, using one of the biological network notations, together with some of the cor-
responding Maude rules. Arrows connect before and after states of reactants. Rule
enabling elements that are not consumed are indicated by lines perpendicular to the
arrow. From the picture we see there is an equilibrium between PIP2 and PIP3
(indicated by the pair of arrows between them). This equilibrium is expressed by
the pair of rules (643,107). Also, we see (from the pair of vertical arrows) that
there are (at least) two ways for PKCe to be activated (rules 757 and 758). In rule
758 the variable ?nPKC:nPKC ranges over a protein subsort that contains PKCe
and a small number of related proteins.

3.3 Computing with BP

Now we give some examples showing the use of BP.

3.3.1 PKC analyses
We first consider the PKC network, and carry out some analyses on the initial state
q14 which is defined as follows.

op q14 : -> Dish .
eq q14 =

PD(Ca++ � CM | PIP2 [PI3Ka - act] [PLCb1 - act] [Pten - act]
� Erk1 Pdk1 PKCa PKCe � � ) .

First we simply rewrite according to two different builtin strategies, invoked by
the commands rewrite and frewrite respectively. The command rewrite
invokes the Maude default strategy, which is a top down rewriting strategy. Using
this strategy we have:

rewrite q14 .
result Dish:

PD( � CM | Ca++ DAG IP3 [PI3Ka - act] [PLCb1 - act] [Pten - act]
� Erk1 Pdk1 [PKCa - act] [PKCe - act]

� NM | empty � empty � ����� )
The command frewrite invokes Maude’s position fair rewrite strategy. Us-
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{CA++}IP3 DAG   PDK1*

cPKC cPKC*

Pdk1

Akt

Akt*PKCe*

 PKCe

PIP2 PIP3

  PI3K*
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etc.

    Erk Erk*

 PTEN*

PLC*

107

643

84

108

109

314

758 757

754;410

rl [643.PI3KI.mets.PIP2.to.PIP3]:
PIP2 [?PI3KI:PI3KI - act] => PIP3 [?PI3KI:PI3KI - act] .

rl [107.Pten.pp.PIP3.to.PIP2]:
PIP3 [Pten - act] => PIP2 [Pten - act] .

rl [84.PLC.act.PIP2.Ca]:
Ca++ � CM| PIP2 cm:Soup [?PLC:PLC - act] � cyto:Soup ���
=>
� CM|cm:Soup (Ca++ DAG IP3) [?PLC:PLC - act] � cyto:Soup ��� .

rl [758.DAG.act.nPKC]:
� CM | DAG cm:Soup � cyto:Soup ?nPKC:nPKC � �
=>

� CM | DAG cm:Soup � cyto:Soup [?nPKC:nPKC - act] ��� .

Fig. 1. PKC regulation network. A “*” following a protein indicates that it is activated.

ing this strategy we have:

frewrite q14 .
result Dish:

PD( � CM | Ca++ DAG IP3 [PI3Ka - act] [PLCb1 - act]
[Pten - act] [Pdk1 - act]
� Erk1 [PKCa - act] [PKCe - act]
� NM | empty � empty ��� ��� )

Notice that using the position fair rewrite strategy, Pdk1 is activated and recruited
to the cell membrane, while using the top down strategy it remains unactivated in
the cytoplasm. These two executions already show that there are multiple possible
outcomes starting with q14. We can find all the possible outcomes using the search
command.

search q14 =>! D:Dish .

This constructs the entire path graph for the PKC regulation network starting with
initial state q14 and reports three final states, numbered 6, 20, and 23. State 6 is
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Fig. 2. PKCe path graph

the result obtained using rewrite, and state 20 is the result obtained using frewrite.
In state 23 (shown below) Erk1 has been activated and translocated from the cy-
toplasm to the nucleus.

Solution 3 (state 23)
D:Dish -->
PD( � CM | Ca++ DAG IP3 [PI3Ka - act] [PLCb1 - act] [Pten - act]

[Pdk1 - act][PKCe - act]
� [PKCa - act] � NM | empty � [Erk1 - act] � ��� � )

Figure 2. shows the structure of the full path graph for q14 (S0).
Some of the rule labels in the repeated ‘commuting diamonds’ are omitted to reduce
clutter. Note that the graph essentially splits into three parts, one for each solution.
However equilibrium expressed by the pair of rules (107,643) adds some com-
plication from a graph analysis point of view.

3.3.2 The EGF-EGFR network
Our analysis of the EGF-EGFR network begins with the state q1 defined by

op q1 : -> Dish .
eq q1 = PD(EGF � CM | EGFR Pak1 PIP2 nWasp [H-Ras - GDP]

� Akt1 Gab1 Grb2 Gsk3 Eps8 Erk1
Mek1 Mekk1 Mekk4 Mkk4 Mkk3 Mlk2
Jnk1 p38a p70s6k Pdk1 PI3Ka PKCb1
Raf1 Rsk1 Shc Sos [Cdc42 - GDP]
� NM | empty � cJun cFos ����� � ) .

Suppose we want to find out if a state with cJun and cFos activated is reach-
able. And further suppose we want to know what happens if PI3Ka is removed
from q1 (call it q1x). The Maude model-checker [13,15] can be used to find a
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counter-example to the assertion that such a state is never reachable. The interface
to the Maude model checker is embodied in the MODEL-CHECKER module. This
module defines syntax for LTL (Linear Temporal Logic) formulas built over a sort
Prop. It also introduces a sort State and a satisfaction relation

� �
on states and

LTL formulas.
To use the model checker, the user defines particular states and propositions

and axiomatizes satisfaction on these states and propositions. LTL semantics lifts
satisfaction from propositions to arbitrary LTL formulas. In our BP experiments
states are dishes, thus Dish is declared to be a subsort of State. A proposition
prop1 that is satisfied by dishes with cJun and cFos activated is defined as
follows.

subsort Dish < State .
op prop1 : -> Prop .
eq PD(out:Soup

� CM | cm:Soup
� cyto:Soup
� NM | nm:Soup

� nuc:Soup [cJun - act] [cFos - act] � ��� � )
|= prop1 = true .

The formula ˜ <> prop1 says that prop1 never holds. Executing the command

red q1 |= ˜ <> prop1 .

results in a counter example – a reachable state satisfying prop1 together with a
path leading to that state. A more biologist friendly notation for such uses of the
model-checker is obtained by defining

eq findPath(S:State,P:Prop) = getPath(P:Prop, S:State |= ˜ <> P:Prop) .

where getPath abstracts the counter example returned by Maude to a list of
rule labels followed by a state satisfying the given proposition. If we execute
findPath(q1,prop1) and findPath(q1x,prop1) we discover that in-
deed, in both cases a state with cJun and cFos both activated is found. However,
Akt1 and Eps8 are both activated when PI3Ka is present, but not when it is
removed. (For details see Figure 4 in the appendix.)

3.4 Meta analysis

There is a variety of metadata associated with the executable model of a signaling
network (and many other systems). This includes information justifying or qual-
ifying a rule and rate information about a rule. There is also ordering informa-
tion such as “activation rules should be applied before translocation rules”. There
are patterns that rules of a particular class of event should follow, and “biological
type checking” can be used to ensure that these patterns and other constraints on
the model structure are satisfied. Furthermore, as the model of a system grows,
consistency checks become more important and it is useful to be able to answer
simple questions such as “What are all the rule labels?” or “What constants of
sort Protein have been declared?”. Using the reflective capability of Maude it
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is easy to formalize such metadata and use it to further control experiments or to
answer questions and carry out various meta-analyses. As an example, we out-
line how to answer the question concerning the declared proteins. The BP meta-
model extends the Maude META-LEVEL module [5], which provides a meta-
representation of modules and rewriting. For questions about constants, an operator
constSetBySort is defined which takes a (metarepresented) module and a sort
and returns the set of quoted identifiers naming all declared constants having the
given sort in the given module. For example, assuming BP names the metarepresen-
tation of the BP model (this can be generated using Full Maude 2.0 [11]), reducing
constSetBySort(BP, ’Protein) results in a listing of all the protein con-
stants of the model. The operator constSetBySort selects the set of operation
declarations from the module and, using auxiliary functions constSetBySortX
and constBySortX, checks each of the declarations to see if the operation is a
constant and, if so, whether the declared sort is less or equal to the given sort in the
sort partial order of the module. The operator declarations and the equation defining
the key operation constBySortX are as follows.

op constSetBySort : Module Sort -> QidSet .
op constSetBySortX : OpDeclSet SortSet -> QidSet .
op constBySortX : OpDecl SortSet -> QidSet .
...
eq constBySortX((op q:Qid :

tl:TypeList -> t:Type[atts:AttrSet].),
ss:SortSet)

= if ((tl:TypeList == nil) and member(t:Type,ss:SortSet))
then q:Qid
else none
fi .

Application of constBySortX destructs an operator declaration by pat-
tern matching, extracting the operation name, q:Qid, the argument type list
tl:TypeList, the result type t:Type, and any attributes. There are many more
useful questions that can be answered using similar techniques, such as “find all
rules that activate Pdk1” or “find all rules that move activated Erk1 to the nu-
cleus”.

In addition to being able to ask questions about the model structure and con-
tent our biologist would like to visualize rules and path segments in a form more
intuitive than the Maude rule syntax. In the literature pictures called “cartoons” are
used for this purpose. Although suggestive, these pictures leave much information
implicit, they can be ambiguous, and there are many different ways of picturing
a given reaction or event (shades of OO design notations). There have been some
proposals for “standard” graphical elements [8,21] but they lack an underlying for-
mal model and thus are still just icons to manipulate by hand. We have defined a
cartoon data type in the BP metamodel to serve as a formal foundation for visualiza-
tion. Formal cartoons contain all the information of a rule, given some assumptions
about cell structure, they eliminate information such as place holders that are irrel-
evant for visualizing, and they make explicit other information such as biological
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Fig. 3. Three ways to visualize the PKCe rule

sorts. The relevant elements of a rule are its label and the non-placeholder “items”
in the left- and right-hand sides. Each item is represented in the cartoon by its print
name, its biological sort, its location within the rule soup, and an abstraction of its
modification state. Thus a cartoon in the BP metamodel is a term of the form:

ctoon(ruleid:Qid, lhs:ItemSet, rhs:ItemSet)

where an item is a term of the form

item(pname:String, bsort:BioSort, loc:Location, a:Activation)

A metaoperation rs2cts has been defined to map rules to cartoons. Applying
rs2cts to the rule 757.PIP3.Pdk1.act.PKCe (see subsection 3.2 produces
the cartoon:

ctoon(’757.PIP3.Pdk1.act.PKCe,
( item("PIP3", Protein, membrane(’CM), noact)

item("PKCe", Protein, interior(’CM), noact)
item("Pdk1", Protein, membrane(’CM), act) ),

( item("PIP3", Protein, membrane(’CM), noact)
item("PKCe", Protein, membrane(’CM), act)
item("Pdk1", Protein, membrane(’CM), act) ))

Figure 3.4 shows three possible visualizations that could be generated automati-
cally from this formal cartoon. View (1) is the representation of the rule given in
Figure 3.2. This is a common signalling network representation that shows what is
changed and what else must be present. View (2) is a visualization inspired by the
Petri Net formalism for networks of computer processes. It shows the rule label in
a box, the required cell contents before the reaction are indicated by arrows leading
to the box and resulting contents after the reaction by arrows leading away from
the box. Thus the feedback loops show elements that are unchanged (catalysts).
View (3) shows a representation of the cell state before and after, adding infor-
mation about where in the cell the reaction elements are located. The double line
represents the cell membrane, and the inside of the oval represents the cytoplasm.
Location information could easily be added to the picture in (2).
The ability to generate different visualizations from the rules is important for a
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number of reasons, including: as an aid in understanding the signal flow or chem-
ical processes in a path; and as an additional check that a rule correctly captures
known data about the reaction. Although they have the look of “cartoons” these
visualizations have an underlying formal representation that can be computed with
and composed to form more complex rules representing path fragments whose in-
ternal structure can be hidden.

4 Conclusions and Future Work

We have described a representation of biological signaling networks in Maude and
shown how such a model can be used for various in silico experiments and ad-
vanced forms of symbolic analysis. Executable models such as this put new kinds
of computational capabilities into the hands of biologists. Their predictive power
can be used to generate hypotheses to be tested by other means and to design exper-
iments. They also serve as a starting point for a wide range of exciting applications
of formal modeling.

Although the BP model is already quite advance there is more data to add, and
much more to do to improve and extend the analysis and metamodeling capabilities.
An important issue is development of methods to simplify and abstract signalling
path models for particular classes of question, in order to be able to scale to analysis
of much larger systems and answering more complex questions.
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Appendix: The EGFR counter examples

Figure 4 shows the results of using the model-checker to find paths leading to acti-
vated cJun and cFoswith and without PI3Ka present initially. To make compar-
ison of the two counter examples easier, ***s tag lines of rule labels that appears
in one but not the other.
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red findPath(q1,prop1) .
result SimplePath: spath(’1.EGFLike.act.EGFR ’353M.EGFR.act.Gab1

’418B.EGFR.act.Cdc42 ’349.Cdc42.act.Mekk1 ’471.Cdc42.act.Mekk4
’470.Cdc42.act.Mlk ’3.EGFR.act.Shc
’429.Gab1.act.PI3K ’498.PI3K.act.Eps8 ***
’411.Shc.act.Grb2 ’324.Shc.Grb2.act.Sos ’618.Cdc42.act.Wasp
’6.Sos.act.Ras ’280.Ras.act.Raf ’274.Raf1.act.Mek1/2
’643.PI3KI.mets.PIP2.to.PIP3 ’108.PIP3.act.Pdk1 ***
’109.PIP3.Pdk1.act.Akt ’122.Akt.deact.Gsk3 ’121.Akt.to.nuc ***
’21.Mek1/2.act.Erk1/2 ’437.Erk.act.Rsk ’410.Erk1/2.to.nuc
’163.Rsk.to.nuc ’36.Mekk1.act.Mkk4/7 ’457.Mekk4.act.Mkk3/6
’61.Mkk3/6.act.p38 ’450.p38.to.nuc. ’43.Mkk4/7.act.Jnk
’49.Jnk.to.nuc ’50B.Jnk.Gsk3.act.cJun ’162.Erk.Rsk.act.cFos,

PD(EGF � CM | Grb2 Pak1 PIP3 [Cdc42 - GTP] [EGFR - act]
[Eps8 - act] [Gab1 - act] [Pdk1 - act] [PI3Ka - act]
[Raf1 - act] [H-Ras - GTP] [Shc - act] [Sos - act]
[nWasp - act]
� p70s6k PKCb1 [Gsk3 - deact] [Mek1 - act] [Mekk1 - act]
[Mekk4 - act] [Mkk3 - act] [Mkk4 - act] [Mlk2 - act]
� NM | empty � [Akt1 - act] [cFos - act] [cJun - act]

[Erk1 - act] [Jnk1 - act]
[p38a - act] [Rsk1 - act] ����� � ))

red findPath(q1x,prop1) . *** PI3Ka removed
result SimplePath: spath(’1.EGFLike.act.EGFR ’353M.EGFR.act.Gab1

’418B.EGFR.act.Cdc42 ’349.Cdc42.act.Mekk1 ’471.Cdc42.act.Mekk4
’470.Cdc42.act.Mlk ’3.EGFR.act.Shc
’411.Shc.act.Grb2 ’324.Shc.Grb2.act.Sos ’618.Cdc42.act.Wasp
’6.Sos.act.Ras ’280.Ras.act.Raf ’274.Raf1.act.Mek1/2
’21.Mek1/2.act.Erk1/2 ’437.Erk.act.Rsk ’410.Erk1/2.to.nuc
’36.Mekk1.act.Mkk4/7 ’457.Mekk4.act.Mkk3/6 ’61.Mkk3/6.act.p38
’450.p38.to.nuc. ’43.Mkk4/7.act.Jnk ’49.Jnk.to.nuc
’149.Rsk.iphos.Gsk3 ***
’50B.Jnk.Gsk3.act.cJun ’163.Rsk.to.nuc ’162.Erk.Rsk.act.cFos,

PD(EGF � CM | Grb2 Pak1 PIP2 [Cdc42 - GTP] [EGFR - act]
[Gab1 - act]
[Raf1 - act] [H-Ras- GTP] [Shc - act] [Sos - act]
[nWasp - act]
� Akt1 Eps8 Pdk1
p70s6k PKCb1 [Gsk3 - deact] [Mek1 - act] [Mekk1 - act]
[Mekk4 - act] [Mkk3 - act] [Mkk4 - act] [Mlk2 - act]
� NM | empty � [cFos - act] [cJun - act] [Erk1 - act]

[Jnk1 - act] [p38a - act] [Rsk1 - act] � ����� ))

Fig. 4. Model checking EGF-EGFR pathway.
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