
MTCoord 2005 Preliminary Version

Coordination Models Based on
a Formal Model of Distributed Object

Reflection

Carolyn L. Talcott1,2

Computer Science Laboratory
SRI International

Menlo Park, CA 94025, USA

Abstract

We propose a family of models of coordination of distributed object systems representing
different views, with refinement relations between the different views. We start with dis-
tributed objects interacting via asynchronous message passing. The semantics of such a
system is a set of event partial orders (event diagrams) giving the interactions during pos-
sible system executions. A global coordination requirement is a constraint on the allowed
event diagrams. A system coordination specification consists of a meta-level coordinator
that controls message delivery in the system according to a given global policy. The system-
wide coordination can be refined/distributed using coordinators for disjoint subsystems that
communicate with their peers to enforce the global policy. By a further transformation the
meta-level can be replaced by systematically transformed base-level objects communicat-
ing via a controller object. The coordination models are formalized in rewriting logic using
the Reflective Russian Dolls model of distributed object reflection. The general ideas are
illustrated with several examples.

Keywords: coordination, distributed object reflection, policy, event diagram

1 Introduction

We present ongoing work to develop semantic models of coordination of distributed
object systems and formal executable specifications from multiple points of view.
The view points range from a global view of the possible interactions among a sys-
tem of objects to a local view of how controller objects achieve coordination. The
former can be thought of as an end-to-end requirements level. The latter is closer
to system design or implementation. The eventual goal is a theory of refinement
and composition for coordination of distributed object systems.

1 The work was partially supported by NSF grant CCR-023446.
2 Email: clt@cs.stanford.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Talcott

The underlying computation model is based on the actor model of distributed
objects interacting via asynchronous message passing [15,5,1]. The semantics of
such a system is a set of event partial orders, called event diagrams [14,9,26]. Exe-
cutable specifications are formalized in rewriting logic [18,20] using the Reflective
Russian Dolls (RRD) model of distributed object reflection [19].

In this setting, a coordination requirement is a constraint on the allowed event
diagrams. A system-wide coordinator is specified by specifying a coordination
policy enforced by a meta-level coordinator object that controls message delivery
in the system according to that policy. The system-wide coordination can be dis-
tributed using coordinators for disjoint subsystems that communicate with their
peers to enforce the system-wide policy. The meta-level can be replaced by sys-
tematically transformed base-level objects communicating via a controller object.

Plan. Section2 gives a brief introduction to rewriting logic and the RRD model.
Section3 defines the event model and the notions of coordinator and coordina-
tion requirement. Section4 defines the policy based executable specification of a
coordinator and the notion of a coordination policy satisfying a coordination re-
quirement. Section5 discusses distribution of system-wide coordinator to multiple
local coordinators, and a transformation to remove the meta-level in favor of an ob-
ject level controller. Section6 discusses some related work and section7 concludes
with a discussion of future directions.

2 Background

To provide context we give a brief introduction to rewriting logic and the Reflective
Russian Dolls (RRD) model of distributed object reflection.

Rewriting logic[18] is a logical formalism designed for modeling and reason-
ing about concurrent and distributed systems [17]. It is based on two simple ideas:
states of a system are represented as elements of an algebraic data type; and the be-
havior of a system is given by local transitions between states described byrewrite
rules. A rewrite rule has the formt ⇒ t′ if c wheret andt′ are terms representing
a local part of the system state, andc is a condition on the variables oft. This
rule says that when the system has a subcomponent matchingt, such thatc holds,
that subcomponent can evolve tot′, possibly concurrently with changes described
by rules matching other parts of the system state. The process of application of
rewrite rules generates computations (also thought of as deductions). Maude [7,8]
is a formal language and tool set based on rewriting logic used for developing,
prototyping, and analyzing formal specifications.

Reflective Russian Dolls(RRD) [19] is a generic formal model of distributed
object reflection based on rewriting logic. The model combines logical reflection
with a structuring of distributed objects as nested configurations of meta-objects (a
la Russian Dolls) that can reason about and control their sub-objects. This model
can be used to develop formal specifications of interaction as well as architectural,
and behavioral aspects of distributed object-based systems. For example, the Inter-

2

Talcott

net is not really a flat network, but a network of networks, having different network
domains, that may not be directly accessible except through specific gateways, fire-
walls, and so on. As another example, a multimedia server is a nested collection
of resource manager objects (load balancing, admission control, object placement,
and so on) and an execution environment object that coordinates execution of con-
tained objects generating media streams.

For the purpose of specifying and modeling coordination we use two broad
classes of meta-object—coordinatorsandcustomizers. A coordinator has a dis-
tinguished attribute that holds a nested configuration of objects and messages and
controls delivery of messages in its contained configuration. A customizer contains
a single object and is used to locally manage object meta-data and adapt the objects
communication.

3 Event Diagrams and Coordination Requirements

We use Maude-like syntax in describing the formal model. Objects are formalized
as terms of the form

[a : A | atts | inQ, outQ]

wherea is an object identifier,A is a class identifier, andatts is an attribute set,
giving the objects internal state.inQ andoutQ are the objects input and output
message queues. For simplicity we assume messages have the forma<-mb where
a is the message target (addressee) andmbis the message body. The behavior of an
individual object is given by message delivery rewrite rules of the form

rl[dlv]: [a : A | atts | (msg inQ), outQ]
=>

[a : A | atts’ | inQ, (outQ outQ’)] if cond

The first message of the input queue (msg) is delivered. As a result the object’s
attributes may be modified, becomingatts’ , and messagesoutQ’ , possibly none,
are added to the output queue. The termcond is a boolean term constraining
conditions under which the rule applies.3

An object system is a multiset of objects and messages with default communi-
cation infrastructure rules[obj.out] and[obj.in] that simply move messages
from output queues to the system soup and move messages from the system soup
into the input queue of the target actor.4

rl[obj.out]:
[a : A | atts’ | inQ, (msg outQ)] =>

[a : A | atts’ | inQ, outQ] msg
rl[obj.in]:

[a : A | atts’ | inQ, outQ] msg =>
[a : A | atts’ | (inQ msg), outQ] if target(msg) == a

3 In general, new objects may also be created. To simplify discussion, we omit that aspect.
4 Here we consider closed systems. It is straightforward to extend the ideas to open systems where
messages may arrive from external objects and may be sent to external objects by adding external
interaction rules.

3

Talcott

Rules such as the message delivery and communication rules apply to a multiset of
objects and messages when the rule left-hand side matches a sub-multiset and the
rule condition, if any, evaluates totrue . In which case, the matched sub-multiset
is replaced by the rule right-hand side.

A computation is a possibly infinite sequence of rewrites:

S0
l1−→ . . .

lk−→ Sk . . .

whereli is a label determined by the rewrite rule applied, a delivery rule, or one of
the infrastructure communication rules. For a rewrite using a delivery rule the label
has the formdlv(a<-mb,i,b,j) wherea<-mb is the message delivered,i is the
objects local time (modeled as the number of messages sent or received) andb,j

is the message identifier represented using the sender identifier and local time.

Event diagram semantics.The event diagram associated with a computation is
the set of events(mb,a,i,b,j) such thatdlv(a<-mb,i,b,j) is the label of a
rewrite in the computation. The partial ordering on events is the transitive closure
of the arrival and activations orders, where thearrival order is given by

(mb,a,i,b,j) < (mb’,a,i’,b’,j’) iff i < i’

and theactivation orderis given by

(mb’,b,j, a’,j’) < (mb,a,i,b,j’’)
if a<-mb was sent in the rewrite in which b<-mb’ was deliviered.

The event diagram semantics of a systemS, ED(S), is the set of event diagrams
associated to the possible computations ofS. 5

Coordinators and Coordination Requirements.A coordinator, C, constrains the
interactions of a systemS. We writeC{S} for the application of a coordinatorC
to a systemS and require

ED(C{S}) ⊆ ED(S)

A coordination requirementis a predicateΦ on event diagrams. The coordina-
tor CΦ associated with a requirementΦ is defined by

ED(CΦ{S}) = {ed ∈ ED(S) Φ(ed)}

Note that not all requirements are realizable. In the next section we will define a
class of realizable requirements given by executable specifications of policy-based
coordinators.

Requirements Example 1.Consider a system with a ticker object with identifiert

used by other objects as a clock. A ticker has a local counter. Initially there is a mes-

5 To formalize conditions such as the above, we instrument each object with a counter representing
the objects local time and augment the communication rules by annotating messages in the soup with
the sending object identifier and local time. Because we allow multiple messages to be sent at once,
the sending time of the ith message generated by a message delivered at timej is j + i .

4

Talcott

saget<-tick , and objects may request the time using messages(t<-time@a) .
When t<-tick is delivered, a ticker increments its counter and sendst<-tick .
Whent<-time@a is delivered, a ticker sendsa<-timeReply(n) wheren is the
current value of its counter.

The requirementΦ+(t) requires that each at least one tick is delivered between
any two time requests. That is,Φ+(t)(ed) holds if for any(time@b’,t,j,b,i) ,
(time@a’,t,j’,a,i’) in ed if j < j’ then (tick,t,k,t,k’) is in ed for
somek,k’ such thatj < k < j’ .

Requirements Example 2.In this example we specify coordination requirements
corresponding to ordering guarantees that might be provided by a group commu-
nication service [6]. We consider two common guarantees: fifo and causal or-
dering. There are several other standard ordering guarantees that can be treated
similarly. To simplify the discussion we assume a predicate that identifies group
communications—messages sent to all objects in the system. Fifo delivery seman-
tics requires that messages from the same sender are delivered in the order sent
(possibly interleaved with messages from other senders). Causal delivery seman-
tics requires fifo delivery and in addition, all group messages delivered to the sender
prior to sending must be delivered to a receiver first.

The fifo ordering requirement,Φf (ed), holds if for all events(mb,a,j,b,i) ,
(mb’,a,j’,b,i’) in ed such thatmb,mb’ are group message bodies,i’ < i

implies j’ < j .
To define the causal order on group communication events we first define the

preorder on message send identifiers,(a,j) ≺ed (b,i) , as the transitive closure
of the following clauses:(a,i) ≺ed (a,i’) if i < i’ , and(b,i) ≺ed (a,j) if
(mb,a,j,b,i) is in ed andmb is a group message body.

The causal ordering requirement,Φc(ed), holds if Φf (ed) holds and for all
(mb,a,j,b,i) , (mb’,a,j’,b’,i’) in ed such thatmb,mb’ are group message
bodies, if(b’,i’) ≺ed (b,i) thenj’ < j .

4 Coordination Policies and Executable Coordinators

We specify coordinators as RRD meta-objects with a policy attribute that deter-
mines when messages in the contained configuration can be delivered. To this end,
we extend the specification of basic object and message data types with annotations
and specification of events, finite sets of events, pending events, and policies. An
annotated objecthas the form

[a : A | atts | inQ, outQ, i, status]

where i is the objects local time, incremented each time the object is rewritten
using a message delivery rule, or a message is removed from the output queue.
The flagstatus , one of (ready , busy), is used to maintain the causal relation
between delivery of received messages and the resulting messages sent. Anevent
is a tuple(mb,a,i,b,j) as above, and a (finite) event diagram is a finite set

5

Talcott

of events. A pending event is a message annotated with the sender and sending
time, (a<-mb : b,i) , providing a unique message identifier. Pending events
are messages that have been sent but not yet delivered. We declare a sortPolicy

and a satisfaction relation,ed,M,m |= P , whereed is an event diagram,Mis a set
of pending events andm is a pending event. If (ed,M,m |= P) rewrites totrue

thenmcan be delivered in a situation where the events ofed have happened and the
remaining pending events are those inM.

A coordinator is a meta-object of classCoord . It is an instance of a general
class of meta-objects calledcontainers. A coordinator has an attribute{_} whose
value (filling the blank) is a configuration consisting of a multiset of annotated ob-
jects and pending events. In addition to the configuration attribute, a coordinator
has an attribute namedevents whose value is the event diagram of the computa-
tion of the contained configuration from the initial state to present, and an attribute
namedpolicy whose value is the coordination policy being enforced.

A coordinator is initially determined by its identifierc and policyP, and is
applied to a systemS as follows

C[c,P] = [c : Coord | {_}, events: none,policy: P | nil,nil]
C[c,P]{S} = [c : Coord | {S*}, events: none,policy: P | nil,nil]

whereS* is obtained fromS by annotating the objects with local time0 and status
ready and converting each message(a<-mb) in the configuration into an initial
pending event(a<-mb : *,*) with unspecified sender.

The default communication infrastructure rules for the contained object sys-
tem are replaced by the rules of classCoord for object level communication. The
rule [obj.out] is replaced by[coord.out] which converts sent messages to
pending events and updates the object status.

rl[coord.out]:
[c : Coord | {S [a : A | atts | nil, mQ, j, busy]}

policy : P, events : ed | inQ, outQ]
=>
[c : Coord | {S [a : A | atts | nil, nil, j + k, ready] M},

policy : P, events : ed | inQ, outQ]
if k := length(mQ) /\ M := mkPend(mQ,a,j)

wheremkPend(mQ,a,j) is the set of pending events(b<-mb : a,j+i) such
thatb<-mb is theith element ofmQ, counting from 0.

The rule[obj.in] is replaced by[coord.in] which only applies when the
policy is satisfied.

rl[coord.in]
[c : Coord | {S (a<-mb : b,i)[a : A | atts | nil, nil, j, ready]}

policy : P, events : ed | inQ, outQ]
=>
[c : Coord | {S [a : A | atts | (a<-mb), nil, j + 1, busy]

policy : P, events : (ed e) | inQ, outQ]
if ed,pend(S), (a<-mb : b,i) |= P
/\ e := (mb,a,j,b,i)

wherepend(S) is the set of pending events inS.

6

Talcott

We can see from the rules that a coordinator maintains the invariant that there
is at most one message in an objects input queue so that the message delivery caus-
ing messages in the output queue can be determined. When the input queue of an
object isnil and its status isbusy this indicates that a message has been deliv-
ered, thus messages in the output queue can be turned into pending events and the
local time can be incremented. If instead the status isready , this indicates that the
object is waiting for the next message to deliver. In a computation of a coordi-
nated system, if(a<-m : b,j) is among the pending events, then the activation
predecessor event (having the form(mb’,b,i,b’,i’) with i less thanj) is in
events attribute of the coordinator, as well as all arrival predecessors. Furthermore
if (mb,a,j,b,i) is in the events attribute, then the local time of objecta is greater
thanj .

Defn: Coordinated system event diagrams.The event diagram semantics for a
coordinated systemC[c,P]{S} (with objects inS having empty input and output
queues) is defined as follows. Letπ be a computation forC[c,P]{S} and leted i

be the value of theevents attribute of the coordinator in theith state. Then the
event diagram associated toπ, ED(π) is the union of the finite event sets

ED(π) =
⋃

i∈Nat

ed i.

Defn: Policy satisfies Requirement.We say that a policyP satisfies a coordination
requirementΦ (writtenP |= Φ) if for each computationπ of C[c,P]{S} we have

Φ(ED(π))

Examples of Coordination Policies

Now we give examples of policies satisfying the example requirements given at the
end of Section3.

Policy Example 1. The policyP+(t) for coordination of communication with a
ticker is specified by the equation

(ed, M, (b<-mb, a,j) |= P+(t)) =
if b == t and mb == time@a
then msgBody(last(ed,t)) == tick else true fi

wherelast(ed,t) is the last event delivered tot in ed andmsgBody selects the
message body component of a pending event. (If there are no delivered events the
equality will fail due to the initial semantics of Maude modules.)

Proposition 1. The ticker policyP+(t) satisfiesΦ+(t)).
To give an idea of how to reason about policies, we sketch a proof ofProposition

1. Let π be a computation of a coordinated ticker system, and leted =
⋃

i∈Nat ed i

be the associated event diagram. It is sufficient to showΦ+(t)(ed i) for eachi,
which we do by induction. The base case is trivial. AssumeΦ+(t)(ed i) and con-

7

Talcott

sidered i+1 which is reached by applying one of the rewrite rules. The only rule that
changes theevents attribute iscoord.in , and the only event addition that could
violateΦ+(t) is one of the form(time@b,t,j,b’,i) . The policy requires that
last event ined i for t has the form(tick,t,j’,t,i’) and by the coordinator
invariantsj’ is less thanj . Thus we have the required intermediatetick event.

Policy Example 2f. The fifo order coordination policyP-f is axiomatized by the
equation

(ed, M, (a<-mb, b,j) |= P-f) =
group(mb) and before-f(M,a,b,j) == none

wherebefore-f(M,a,b,j) is the set of pending events inMof the form
(a<-mb’,b,j’) such thatj’ < j .

Proposition 2-f. The fifo order policyP-f satisfiesΦf .

Policy Example 2c. The causal order coordination policyP-c is axiomatized by
the equation

(ed, M, (a<-mb, b,j) |= P-f) =
group(mb) and before-c(M,a,b,j) == none

wherebefore-c(M,a,b,j) is the set of pending events inMof the form
(a<-mb’,b’,j’) such that(b’,j’) ≺ed (b,j) .

Proposition 2-c. The causal order policyP-c satisfiesΦc.
We omit proofs of propositions 2-f and 2-c, noting that the ‘before’ sets being

empty ensure that all required predecessor messages have been delivered.

5 Refining Coordinator Specifications

Now we briefly consider two refinements of the policy-based coordinator: distribu-
tion of coordinators, and flattening (elimination of meta-level nesting).

5.1 Distributing Coordination

In practice, a system being coordinated may be distributed and thus can not be
placed under the control of a single coordinator meta-object. Here we show how a
system can be partitioned among several distributed coordinators that communicate
with one another to enforce a system-wide coordination policy.

A distributed coordinator has two additional attributes:sent and fwd . The
value ofsent is the set of pending events that have been sent to a peer coordinator
for delivery, and the value offwd is a table giving for each remote object, the identi-
fier of the peer coordinator containing that object. The coordinator communication
rules are extended with rules for sending messages to and receiving messages from
remote locations. A pending event with remote target is sent to the containing co-
ordinator in adlv message. When adlv message arrives the contained pending
event is added to the configuration.

8

Talcott

rl[coord.xsend]:
[c : Coord | {S (x<-mb : b,i)}, policy : P, events : ed,

sent: M, fwd: locs | inQ, outQ]
=>
[c : Coord | {S}, policy : P, events : ed,

sent: M (x<-mb : b,i), fwd: locs
| inQ, outQ c’<-dlv((x<-mb : b,i), c)]

if c’ := lookup(locs,x) /\ c’ =/= c

rl[coord.xrcv]:
[c : Coord | {S}, policy : P, events : ed, sent: M, fwd: locs

| (c<-dlv((a <-mb : x,i), c’)) inQ, outQ]
=>
[c : Coord | { S (a<-mb : x,i) }, policy : P, events : ed,

sent: M, fwd: locs | inQ, outQ]

In the case of ticker system coordination, this is sufficient. The coordinator con-
taining the ticker only needs local events to check the policy and messages to other
objects are not constrained.

For the group communication example, further adaptation is needed to ensure
that each coordinator has sufficient information to make correct ordering policy
decisions. One way of accomplishing this is to extend the annotations of pending
events with a set of message identifiers (sender,send time) corresponding to mes-
sages that must be delivered before the pending message. For example, in the fifo
case the set of message identifiers of all messages previously sent by the pend-
ing event sender is sufficient. The fifo policy can then be adapted to use only the
extended annotations and the local event diagram to determine satisfaction.

In generally, annotation and policy adaptation can be done as a transformation
of the global coordinator, and then the global coordinator can be distributed as
for the ticker system, once decisions are localized. Localizing first means that the
work of verifying that the localization is correct can be carried out at one level of
abstraction rather than dealing with level crossing at the same time.

5.2 Coordination via object level controllers

To eliminate meta-level nesting, a coordinator can be replaced by a controller object
where the base objects are adapted to communicate via the controller and to keep
track of their local time and status. This transformation is independent of policy
or object system. Each coordinator rule is split into rules for the controller and the
adapted object.

A controller (classCtl) haspolicy andevents attributes as for a coordina-
tor. In addition it has apend attribute that represents the pending events of the
coordinators configuration. At any given time, some pending events may still be
in transit, i.e. in the configuration containing the control object. In addition there
is a wait4 attribute used to wait for the acknowledgment of a transmitted pend-
ing event, before proceeding. The controller only sends a pending event when the
message is deliverable.

9

Talcott

rl[ctl.snd]:
[c : Ctl | pend: M m, events: ed, policy: P, wait4: none

| inQ, outQ]
=>
[c : Ctl | pend: M, events: ed, policy: P, wait4: m

| inQ, outQ m] if ed,M,m |= P

When an acknowledgment of a pending event is received, it contains the local time
of the object when the message was delivered and the controller adds the corre-
sponding event to its event diagram attribute.

rl[ctl.ack]:
[c : Ctl | pend: M, events: ed, policy: P, wait4: m

| (c<-ack(m,j) inQ, outQ]
=>
[c : Ctl | pend: M, events: ed e, policy: P, wait4: none

| inQ, outQ]
if (a<-mb,b,i) := m /\ e := (mb,a,j,b,i)

Pending events received by a controller are added to its pending events set.

rl[ctl.rcv]:
[c : Ctl | pend: M, events: ed, policy: P, wait4: w

| (c<-snd(m)) inQ, outQ]
=>
[c : Ctl | pend: M m, events: ed, policy: P, wait4: w

| inQ, outQ]

The base objects are adapted by wrapping them in acustomizerobject with the
same identifier, that performs the additional bookkeeping and reroutes messages
through the controller. Specifically, a coordinated object customizer has a config-
uration attribute containing a single annotated object, and an attributectl whose
value is the controller identifier.

The customizer rule[cust.in] together with the controller rules[ctl.snd]

and [ctl.ack] implement the coordinator rulecoord.in . Since the controller
only sends a pending event when the message is deliverable, the customizer puts
the message in the object input queue and acknowledges receipt adding the local
delivery time.

rl[cust.in]:
[a : CA | {[a : A | atts | nil,nil,j,ready]}, ctl: c

| (a<-mb : b,i) inQ, outQ]
=>
[a : CA | {[a : A | atts | a<-mb,nil,s j,busy]}, ctl: c

| inQ, outQ c<-ack((a<-mb : b,i),j)]

The customizer rule[cust.out] together with the controller rule[ctl.rcv]

implement the coordinator rule[coord.out] .

rl[cust.out]:
[a : CA | {[a : A | atts | nil,mQ,j,busy]}, ctl: c | inQ, outQ]
=>
[a : CA | {[a : A | atts | nil,nil,j+k,ready]}, ctl: c

| inQ, outQ outQ’]
if k := length(mQ) /\ outQ’ := mkSnd(mQ,j,c)

10

Talcott

wheremkSnd(mQ,j,c) is the set of messagesc<-snd(b<-mb : a,j+i) such
that b<-mb is the ith element ofmQ, counting from 0. Thus the pending events
generated by the coordinator rule[coord.out] are packaged and sent to the con-
troller.

In fact, we have not completely eliminated nesting, however customized objects
can be flattened by straightforward module transformations [10]. The transforma-
tion to customized objects plus controller is also a way to distribute the object
system, however the single controller may not be the most suitable solution.

6 Related Work

There are numerous languages for specifying or programming coordination whose
semantics has been studied by a variety of techniques. The approach of the work
presented here is to start with a semantic model of distributed object coordination,
focusing on interactions rather than system state, and study language independent
coordination mechanisms specified in a general formal logic. Object behavior and
coordination mechanisms are specified separately and composition operations can
be studied in the same framework.

Tuple space languages include Linda [13] and its mobile extension, Lime [23].
Actor languages with coordination abstractions include Synchronizers [12,11] and
Real-Time Synchronizers [24]. These languages provide linguistic constructs for
specifying coordination and come with compilation transformations for implemen-
tation in terms of standard actors. Reo [4,3] is a channel based coordination model
where complex coordinators called connectors are constructed by composing smaller
one. A semantic model based on timed data streams and co-inductive reasoning
principles is given in [2]. Klaim[21] is a process-algebra based language.

In [22] a methodology is proposed for designing coordination between agents
among software agents. The methodology starts with requirements and refines
through several stages. Here coordination is viewed as a dependency between
agents rather that ordering of events. The methodology has associated graphical
notation, but lacks formal semantics.

The Mobile Unity language provides coordination primitives as well as a logic
for reasoning about Mobile Unity specifications. Refinement from a high-level log-
ical specification to mobile unity code is illustrated in [25]. Coordination properties
are based on system state rather than interaction events.

The WS-Coordination specification [16] describes an extensible framework for
providing protocols that coordinate the actions of distributed applications. It fo-
cuses on issues such as initialization, registration and security.

7 Future Directions

We have defined a simple notion of coordination requirement based on event dia-
gram semantics of an object system and executable specifications of policy-based

11

Talcott

coordinators. These ideas were illustrated with simple examples and ideas for trans-
formation to distributed coordinators and base-level controllers were sketched.

An obvious direction of future work is to develop refinement rules that guar-
antee preservation of requirements satisfaction for different classes of policy. Are
there general principles for deriving a distributed coordination protocol? Can the
localization transformation sketched for the case of group communication be gen-
eralized?

Another interesting direction is to consider notions of composition of coordina-
tion requirements or of coordinators. Several notions of composition for container
meta-objects exist that can be explored. In addition, composition based on policy
composition is another possibility. Here we can consider composition with policies
other than coordination, such as security.

Finally, coordination that involves explicit time or use of resources is of interest.
For this, the semantic model will need to be extended appropriately.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, 1986.

[2] F. Arbab and J. J. M. M. Rutten. A coinductive calculus of component connectors.
Technical Report SEN=R0216, Centrum voor Wiskunde en Informatica (CWI), 2002.

[3] Farhad Arbab. A chanel-based coordination model for component composition.
Technical Report SEN=R0203, Centrum voor Wiskunde en Informatica (CWI), 2002.

[4] F. Arbib. Coordination of mobile components, 2001.

[5] Henry G. Baker and Carl Hewitt. Laws for communicating parallel processes. InIFIP
Congress, pages 987–992. IFIP, August 1977.

[6] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group communication
specifications: A comprehensive study.ACM Computing Surveys, 33(4):1–43,
December 2001.

[7] M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott.
Maude 2.0 Manual, 2003.http://maude.cs.uiuc.edu .

[8] M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. L. Talcott.
The Maude 2.0 system. In Robert Nieuwenhuis, editor,Rewriting Techniques and
Applications (RTA 2003), volume 2706 ofLecture Notes in Computer Science, pages
76–87. Springer-Verlag, 2003.

[9] W. D. Clinger. Foundations of actor semantics. AI-TR- 633, MIT Artificial
Intelligence Laboratory, May 1981.

[10] G. Denker, J. Meseguer, and C. L. Talcott. Rewriting semantics of distributed meta
objects and composable communication services. InThird International Workshop on
Rewriting Logic and Its Applications (WRLA’2000), volume 36 ofElectronic Notes in
Theoretical Computer Science. Elsevier, 2000.

12

http://maude.cs.uiuc.edu

Talcott

[11] S. Frølund. Coordinated Distributed Objects: An Actor Based Approach to
Synchronization. MIT Press, 1996.

[12] S. Frølund and G. Agha. A language framework for multi-object coordination. In
ECOOP 1993, volume 707 ofLecture Notes in Computer Science. Springer, 1993.

[13] David Gelernter. Generative communication in linda.TOPLAS, 7(1):80–112, 1985.

[14] I. Greif. Semantics of communicating parallel processes. Technical Report 154, MIT,
Project MAC, 1975.

[15] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for artificial
intelligence. InProceedings of 1973 International Joint Conference on Artificial
Intelligence, pages 235–245, August 1973.

[16] IBM, Microsoft, and BEA Systems. Web services coordination, 2004.

[17] Narciso Marti-Oliet, Jose Meseguer, and Miguel Palomino. Rewriting logic and
applications bibliography.Theoretical Computer Science, 285(2), 2002.

[18] J. Meseguer. Conditional Rewriting Logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[19] J. Meseguer and C. L. Talcott. Semantic models for distributed object reflection. In
European Conference on Object-Oriented Programming, ECOOP’2002, volume 2374
of Lecture Notes in Computer Science, pages 1–36, 2002. invited paper.

[20] Jośe Meseguer. Rewriting logic and Maude: A wide-spectrum semantic framework
for object-based distributed systems. In S. Smith and C.L. Talcott, editors,Formal
Methods for Open Object-based Distributed Systems, FMOODS 2000, pages 89–117.
Kluwer, 2000.

[21] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering, 24(5):315–
330, 1998.

[22] Anna Perini, Angelo Susi, and Fausto Giunchiglia. Coordination specification in
multi-agent systems: from requirements to architecture with the Tropos methodology.
In 14th international conference on Software engineering and knowledge engineering,
pages 51–54. ACM Press, 2002.

[23] G. Picco, A. Murphy, and G.-C. Roman. LIME: Linda meets mobility. In21 Int. Conf.
on Software Engineering, pages 368–377, 1999.

[24] Shangping. Ren. An Actor-Based Framework for Real-Time Coordination. PhD
thesis, University of Illinois at Urbana-Champaign, 1997.

[25] Gruia-Catalin Roman, Christine Julien, and Qingfeng Huang. Formal specification
and design of mobile systems. InFormal Methods for Parallel Programming: Theory
and Applications, 2002.

[26] C. L. Talcott. Composable semantic models for actor theories.Higher-Order and
Symbolic Computation, 11(3):281–343, 1998.

13

	Introduction
	Background
	Event Diagrams and Coordination Requirements
	Coordination Policies and Executable Coordinators
	Refining Coordinator Specifications
	Distributing Coordination
	Coordination via object level controllers

	Related Work
	Future Directions
	References

