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Abstract. Resource limited DRE (Distributed Real-time Embedded)
systems can benefit greatly from dynamic adaptation of system param-
eters. We propose a novel approach that employs iterative tuning us-
ing light-weight, on-the-fly formal verification with feedback for dynamic
adaptation. One objective of this approach is to enable system design-
ers to analyze designs in order to study design tradeoffs across multiple
layers (for example, application, middleware, operating system) and pre-
dict the possible property violations as the system evolves dynamically
over time. Specifically, an executable formal specification is developed
for each layer of the distributed system under consideration. The formal
specification is then analyzed using statistical model checking and statis-
tical quantitative analysis, to determine the impact of various resource
management policies for achieving desired end-to-end timing/QoS prop-
erties. Finally, integration of formal analysis with dynamic behavior from
system execution will result in a feedback loop that enables model refine-
ment and further optimization of policies and parameters. We demon-
strate the applicability of this approach to the adaptive provisioning of
resource-limited distributed real-time systems using a multi-mode mul-
timedia case study.

Key words: Iterative System Tuning, Formal Modeling, Statistical
Formal Methods, System Realization, Cross-layer Timing/QoS/resource
Provisioning for Distributed Systems

1 Introduction

Next generation mobile embedded applications are highly networked, and in-
volve end-to-end interactions among multiple layers (application, middleware,
network, OS, hardware architecture) in a distributed environment. Timing plays
a critical role in QoS-aware system design for a large class of such distributed
applications. Firstly, timing can impact application semantics. Multimedia ap-
plications have soft real-time needs often stated using parameters such as jitter,
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synchronization skews and bounded end-to-end delays. Secondly, there are sev-
eral sources of unpredictability and timing violations in a distributed network;
this introduces nondeterminism in timing. The ability to compensate on-the-fly
for timing violations at different levels is of paramount importance. Thirdly, sev-
eral system level optimizations for effective utilization of distributed resources
can interfere with the timing properties of executing applications. Finally, many
applications have flexible QoS needs that dictate how tolerant they are to de-
lays and errors — the lack of stringent timing needs can be exploited for better
end-to-end resource utilization.

The dual goals of ensuring adequate application QoS (expressed as timeli-
ness, reliability, and accuracy) and optimizing resource utilization at all levels of
the system presents significant challenges. In this context, our preliminary study
[1] demonstrated the need for integration of formal methods with experimen-
tally based cross-layer optimization methods [2,3]. Systematic analysis based on
well-defined models ensures that corner-cases are covered and allows bounds for
critical performance parameters to be determined. Recently, we proposed prob-
abilistic formal methods to provide analysis of given cross-layered optimization
policies with quantifiable confidence [4].

To leverage these prior efforts, we propose an iterative tuning approach for
DRE systems that couples two important facets:
1. a light-weight, on-the-fly formal verification system that can be used dynam-

ically to evaluate the impact of different resource management policies for
achieving end-to-end timing/QoS properties, and

2. a system realization that enables feedback of additional information on dy-
namic system execution behaviors to enhance our light-weight formal mod-
eling and analysis.

The integration of formal analysis combined with observed system execution be-
havior permits better analysis of both cross-layer and end-to-end timing/QoS
properties for highly distributed systems that employ resource constrained de-
vices.

This paper contains the following contributions:
– We present a generic framework to address iterative system tuning of dis-

tributed embedded systems by integrating two synergistic approaches: on-
the-fly formal verification and learning from system realization. The light-
weight formal verification provides degrees of confidence in the feasible so-
lutions satisfying multidimensional constraints. System realization enables
dynamic adaptation by refining the model of the system and the environ-
ment.

– Our work is validated and tested in the context of distributed mobile multi-
media applications that have wide consumer applicability, execute in highly
dynamic changing environments and present interesting opportunities for
tradeoff analysis and enforcement.

The rest of this paper is organized as follows: we start by motivating our
approach. Next, we present the overview of our framework, followed by a de-
scription of our case study (multi-mode multimedia communication system). In
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Section 5, we explain our approach in depth. Specifically, we describe the mod-
eling and specification of our case study. We then introduce our probabilistic
formal analysis, followed by discussion of the feedback loop with our system re-
alization. Our implementation and experimental results show the applicability
of our framework to the distributed real-time multimedia communication do-
main. The last section summarizes our approach and discusses future research
directions.

2 Supporting Adaptation under Timing Constraints

Timing can affect, and be affected by several system and resource parameters
such as storage/buffer, CPU, network topology and communication characteris-
tics as follows.

– Power/Timing Tradeoffs: Power optimization strategies have a significant
implication on the timing properties at different levels of the system. For
instance, dynamic voltage scaling techniques within the operating system
dictate slowdown of the CPU while lengthening the execution time, which
results in possible deadline misses.

– Quality/Timing Tradeoffs: A change in the quality of communicated infor-
mation represents changes in the execution time, communication time and
buffering needs; for instance, lower quality video requires less decoding effort
and time.

– Buffering/Timing Tradeoffs: The presence of a buffer in the datapath of
the streaming information can relax the timing needs at various layers. For
instance, larger buffers at the end device imply that timing constraints on
receiving new data can be less stringent at the cost of memory usage. This
in turn can translate into longer sleep durations (low-power operation) for
power-intensive communication components. Buffering can also be used to
compensate for noise, and hence delays, in the communication networks.

– Error Resilience/Timing Tradeoffs: Error resilience needs are often posed
by applications to dictate fidelity requirements. In streaming applications,
errors are often introduced in the communication process due to the presence
of the network noise. Avoiding these errors typically involves strategies that
retransmit information, encode and check for integrity of data transfer —
all of which have significant implications on the overall timing behavior of
the system.

This problem will be much more complex if we consider that the system and
environment may keep evolving, requiring dynamic adaptation. Given a cur-
rent configuration and a set of changes (e.g., new application/task; parameters
for existing tasks such as framerate/resolution/synchronization; device residual
power level; network delay/jitter, etc.), we need to perform dynamic adaptation
(re-determine the policy, followed by bound/sensitivity analysis on the impact
of the selected policy) since all the changes are critically related to timing.

In this context, we propose a unified framework for iterative and proactive
system tuning to support adaptations. Initially, our framework performs prop-
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Fig. 1. The Iterative System Tuning

erty checking and quantitative analysis among candidate policy/parameter set-
tings via formal executable specifications followed by probabilistic formal anal-
ysis. In our framework, the iterative tuning allows model refinement from up-
to-date and continuous observations of system execution behavior. Furthermore,
this can be used to improve adaptation by verifying given system properties
or by relaxing constraints. A priori information, as forecasted by the system
realization, enables proactive control.

3 A Framework for Iterative/Proactive System Tuning

Figure 1 presents the overall flow of our approach. We take three major steps:
(1) formal modeling, (2) probabilistic formal analysis, and (3) model refinement
and proactive control. In Figure 1, the Box A represents the formal model-
ing. The core of our formal modeling approach is to develop formal executable
models of system components at each layer of interest. These models express
functionality, timing, and other resource considerations at the appropriate level
of detail and using appropriate interaction mechanisms (clock ticks, synchronous
or asynchronous messages). Models of different layers are analyzed in isolation
and composed to form cross-layer specifications. The use of Maude as a reasoning
tool will be discussed in more detail in Section 5.1.

One advantage of formal executable models is that they can be subjected to
a wide range of formal analysis, including: single execution scenarios, search for
executions leading to states of interest, and model-checking to understand prop-
erties of execution paths. The Box B in Figure 1 shows the evaluation phase
of given specifications to generate statistics of monitored properties and val-
ues. Specifically, we have developed new analysis techniques (statistical model-
checking and statistical quantitative analysis) that combine statistical and formal
methods, and applied them to a case study treating the videophone mode of a
multi-mode multimedia terminal [4]. Section 5.2 introduces a brief review of our
probabilistic formal methods.
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Using such models and analysis, tools can be developed to achieve adap-
tive refinement of an end-to-end system specification into appropriate pol-
icy/parameter settings. We propose an iterative tuning strategy that combines
formal methods (verification) with dynamic system execution behavior (obtained
by either simulation or implementation). The execution behavior from system
realization (Box C in Figure 1) is fed back into the formal modeling to refine
the executable specification (model refinement). In addition, we can assure the
quality of a new policy/parameter constructed by the controller. In Figure 1,
Pre-testing on a system realization can lead to improvements because typically
the formal model can not cover all the possible implementation details of a real
system (proactive control). We will explain iterative tuning and proactive control
in Section 5.2 and 5.3 in more detail.

4 Case Study: Multi-mode Multimedia Terminal

Although we intend our approach to be widely applicable, we begin by devel-
oping and evaluating formal specification models in the context of distributed
multimedia applications.

Figure 2 shows an example of a multi-mode multimedia terminal (MMMT)
system [5] that we are using as a research vehicle. The figure depicts a hierarchi-
cal composition of tasks within the MMMT system. At the top level, three types
of hierarchical tasks are defined to specify each mode of operation: soft real-time
(a videophone, a VoD player, an MP3 player), event-driven (email client), and
time-critical emergency messaging (SMS-Short Message Services). Three other
tasks are also specified at the top level for user interface, connection handling,
and task execution control. In addition, each mode of operation consists of mul-
tiple tasks as shown in the figure. This type of application requires frequent task
set changes based on user input and/or node/network conditions (e.g., residual
power level, packet drop rate, noise level, etc.). As an example, a high-end video-
phone mode would be able to better meet its timing constraints at maximum
CPU performance while receiving packets via a reliable channel. However, if the
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residual power level dropped or packet loss rate increased significantly, then we
might need to save energy by reducing QoS or suspending some tasks. A user also
can explicitly change modes and assign different priorities for each task/mode.

As you see from the layered view of a device in Figure 1, the resource man-
agement policies that are used in the different layers include: a specific video
encoding/decoding algorithm at the application layer; network monitoring at
the middleware layer; and DPM (Dynamic Power Management) and/or DVS
(Dynamic Voltage Scaling)3 at the OS layer [6]. Network traffic shaping and/or
trans-coding at the middleware layer can be also utilized. Each policy has param-
eters that can be used to fine-tune the behavior. In addition, there are hardware
parameters that can be set.

For instance, we consider proactive PBPAIR (Probability-Based Power-
Aware Intra Refresh) [7] as an application layer policy. The PBPAIR scheme
inserts intra-coding (i.e., coding without reference to any other frame) to enhance
the robustness of the encoded bitstream at the cost of compression efficiency.
Intra-coding improves error resilience, but it also contributes to reducing en-
coding energy consumption since it does not require motion estimation4 (which
is the most power consuming operation in a predictive video compression algo-
rithm). The additional proactive feature means that we have a priori information
on the user’s mobility (e.g., current zone, speed and trajectory, etc.) and network
situation (e.g., packet loss rate, delay, etc.) that later will be used for selection
among policies and related parameter tuning before the user enters a new zone.
If PBPAIR is selected as an application layer policy, then algorithm-specific pa-
rameters such as Intra threshold value must be chosen for appropriate execution.
Note that the parameter selection at one layer affects other layers. For example,
PBPAIR increases intra-coding by lowering the Intra threshold parameter when
there is high network packet loss (monitored at middleware layer), which im-
pacts the DVS decision at OS layer since the execution profile of the application
is changed.

5 Iterative Tuning by Formal Verification Combined with
System Realization

Our approach combines

– Modeling, specification and reasoning about cross-layer and end-
to-end properties: We propose a novel approach based on concurrent
rewriting logic to formally specify and reason about end-to-end timing/QoS
issues across layers and study their inter-relationships.

3 DPM puts a device into a low power/performance state to save energy when the
device is not serving any request during a suitably long time-period determined by
the shutdown and wake-up overhead of the device. DVS aims at saving energy by
scaling down the supply voltage and frequency when the system is not fully loaded.

4 In predictive coding, motion estimation eliminates the temporal redundancy due to
high correlation between consecutive frames by examining the movement of objects
in an image sequence to try to obtain vectors representing the estimated motion.
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– Design of policies and mechanisms for addressing tradeoffs based
on the cross-layer analysis: Our work examines the impact of various
resource management techniques on end-to-end timing/QoS properties and
enables informed selection of resource management policies along with rules
for instantiation of parameters that derive the policies.

– Model refinement and proactive control: We enhance our light-weight
formal modeling and analysis by integrating it with observations of system
execution behavior to achieve adaptive reasoning and proactive control by
providing more precise information on current execution and future state.

In the following subsections, we explain each component; formal executable
specification (Section 5.1), controller (Section 5.2), and system realization (Sec-
tion 5.3) of our proposed framework (Figure 1) in depth beginning with our
modeling effort.

5.1 Modeling Effort

Our formal modeling approach utilizes Maude [8] to formally specify the envi-
ronmental changes as well as the policies/parameter settings that can be made
at each of these levels in isolation and for the combined layers. Maude is a spec-
ification language based on rewriting logic with supporting analysis tools. The
Maude system has been used in the specification and analysis of a wide range of
logics, languages, architectures and distributed systems [9,10].

Rewriting logic [11] is a simple logic well-suited for distributed system spec-
ification. The state space of a distributed system is formally specified as an
algebraic data type by giving a set of sorts (types), operations, and equations.
The dynamics of such a distributed system is then specified by rewrite rules of
the form

t → t′ if c

where t, t′ are terms (patterns) that describe the local, concurrent transitions
possible in the system, and c is a condition constraining the application of the
rule. Specifically, when a part of the distributed state matches the pattern t,
and satisfies c, then this part can change to a new local state t′. Rewriting
logic specifications are executable, as proofs in rewriting logic are carried out by
applying rewrite rules which can also be viewed as steps of a computation.

The Maude system is based on a very efficient rewriting engine, support-
ing use of executable models as prototypes. It also provides the capability to
search the state space reachable from some initial state by the application of
rewrite rules. This can be used to find reachable states satisfying a user-defined
property. The system also includes an efficient model-checker for checking prop-
erties expressed in linear temporal logic. The Maude system, its documenta-
tion, and related papers and applications are available from the Maude website
http://maude.cs.uiuc.edu.

In the object-oriented specification style supported by Maude, the system
state (configuration) is typically represented as a multiset of objects and mes-
sages. Passage of time is modeled by functions that update the configuration

 http://maude.cs.uiuc.edu
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*** Property checker
op batteryExpires : Configuration → Bool .
eq batteryExpires(< CPU : HW | residualEnergy : F, atts > C:Configuration)

= (if (F ≤ 0.0) then true else false fi) .

*** Observer
msg Obs : Bool → Msg .
msg EnergyConsumption : Float → Msg .
msg BatteryExpires : Bool → Msg .

rl [cpuObs] :
< CPU : HW | consumedEnergy : F, policy : P, atts >
⇒
EnergyConsumption(F)
BatteryExpires(batteryExpires(< CPU : HW | consumedEnergy : F, atts >)) .

Fig. 3. Maude Specification: Property Checker and Observer

appropriately, for example decrementing timers or decreasing remaining power.
Rules can either be instantaneous or tick rules of the form

C → delta(C, T ) in time T if T ≤ mte(C)

where C is a term representing the system configuration. This tick rule advances
time non-deterministically, according to a chosen time sampling strategy, by a
time T less than or equal to mte(C), the maximal time allowed to elapse in
one step, in configuration C, and alters the system state, C, using the function
delta5. Both delta and mte are user-defined to capture how time passes in a
particular model.

In Maude syntax, objects have the general form

< ObjectName : ClassName | Attribute1 : V alue1, ..., Attributen : V aluen >

where ObjectName is an object identifier, ClassName is a class identifier, and
each Attribute : Value pair specifies attribute identifier and its value.

At the end of each execution, we examine the final configuration of a Maude
specification that has several objects and messages. From those objects and
messages, we need to extract meaningful data — observables. Observables can
be properties or values. For example, to check whether the battery expires or
not at the end of the execution, we need to check the residualEnergy attribute
in CPU object at hardware layer. If the value for the residualEnergy attribute is
positive, then the battery is not empty. Otherwise, the batteryExpires property
returns true meaning the system used up the battery. We encode the check of
properties into the model so that the result contains true or false depending on
whether a property holds or not. On the other hand, if we want to have the energy
consumption rather than the answer for property hold, we can utilize the observer
such as the one shown in Figure 3. The observer replaces each object with suitable
messages that have data values for the observables. Furthermore, we use the
Maude API, a foreign language interface to embed the Maude rewriting engine
into larger applications, to extract observables from the Maude execution and
to generate statistics of results.
5 The idea of a tick rule is taken from Real-Time Maude [12].
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5.2 Adaptation by Statistical Evaluation and Reinforcement

Once we extract observables from runs of a formal executable specification, the
controller performs formal verification and pre-testing as illustrated in Figure
1. For verification purposes, we use probabilistic formal methods. The controller
also interacts with a system realization to pre-test selected policies/parameters,
and to obtain information on dynamic system behavior to improve the formal
model. These two techniques are summarized below.

Probabilistic Formal Methods To evaluate feasible design points, we adapt
and improve two statistical evaluation methods — statistical model checking and
statistical quantitative analysis [4]. For statistical model checking, probabilistic
properties such as “Probability that a system can survive with given residual
energy in t time units is more than θ %” are examined. Those formulae are
essentially a restricted version of Continuous Stochastic Logic (CSL) [13] without
nesting. Indeed we found no need for nested formulae or an exact numerical
solution for our application domain. Therefore, we use statistical model checking
to verify such probabilistic properties, more precisely hypothesis testing based
on Monte-Carlo simulation results.

For statistical quantitative analysis, we estimate the expected value of certain
observables such as “Average energy consumption in t time units within confi-
dence interval (δ) and error bound (α)”. Statistical evaluation can be performed
with a large quantity of data that follows a normal distribution, and hence al-
lows the estimation of the expected value and our confidence. To determine the
mathematical soundness of the approximation, we perform a Jarque-Bera (JB)
normality test [14]. More importantly, we generate traces on demand to reduce
the evaluation time since it is linearly proportional to the trace generation time
(i.e., Monte-Carlo simulation time with a different seed). Detailed explanation
on statistical theory background and our implementation can be found in [4].

Model Refinement Within our framework, there are at least two roles for
feedback from observation of system execution behavior: it can be used to im-
prove the model (to make it more accurately match the real environment), and
it can also be used to directly improve the policy using optimization or learning
methods. In this particular work, we only consider the former case, that is model
refinement using the information from dynamic system behavior.

For instance, the formal specification initially models the execution times of
the tasks as a normal (Gaussian) distribution with the average of (BCET+WCET )

2
and the boundary value of 3×δ, where δ represents the standard deviation, based
on profiled best case execution time (BCET) and worst case execution time
(WCET) from sample runs. This model is refined in turn by replacing BCET
and WCET with observations from dynamic system execution (either by system
realization in 5.3 or real implementation), in order to more realistically reflect
the actual executions characterizing the system in practice such as data depen-
dent execution times. In our framework, the controller (written in Java) uses a
Java/Maude foreign language interface to execute/update Maude specifications
and to extract the results for analysis.
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5.3 System Realization

As we briefly mentioned in Section 3, the integration of formal analysis with a
system realization (as illustrated in Figure 1) will result in a feedback loop that
includes the formal models, simulation, and monitoring of running systems for
analysis of the system behavior and for optimizing the choice of policies and
parameters. Specifically, the system realization takes policies/parameters and
returns the dynamic system execution behavior at each layer as seen in Figure
4. For instance, if the controller selects PBPAIR (with appropriate Intra Th
parameter) as the application layer policy and DVS as the OS layer policy, the
system realization executes using the appropriate settings and reports profiled
information such as consumed energy, timing/QoS aspects.

For this purpose, we define a collection of library routines and their argu-
ments that can be used to implement a system realization [15]. At the applica-
tion layer, we need to create a task set for a chosen mode. As an example, video
phone mode has four tasks; video encoder/decoder and audio encoder/decoder,
each with its own parameters (e.g., PBPAIR has Intra Th parameter.). Besides,
the input/output data structure is task specific. For instance, an H.263 encoder
with PBPAIR policy takes the Intra Th parameter, the network packet loss rate
(precisely, this information will be provided as middleware layer input), and raw
video sequences as inputs to generate a bitstream robustly encoded against net-
work transmission errors. In addition, there are encoder QoS related parameters
(e.g., quantization value, IP ratio, frame-rate, buffer size). As a result, applica-
tion profile data such as QoS (PSNR(Peak Signal to Noise Ratio), frame drops)
and timing (deadline misses, BCET, WCET) aspects should be reported.

The most two important observations from our system realization are timing
(BCET, WCET) and network related information. The framework uses timing
information to refine the model and network related information to generate
proactive control. Therefore, in the experiments, we will demonstrate how the
framework can achieve iterative system tuning for proactive control using those
two pieces of feedback from system execution behavior.
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6 Experimental Results

6.1 Evaluation Platform

Using formal executable specifications in Maude, we model PBPAIR as an ap-
plication layer policy as well as two power management schemes — Greedy and
Cluster — as OS layer policies. In the Greedy scheme, the power manager shuts
down whenever the device is idle, while the Cluster scheme tries to aggregate
idle periods to maximize energy efficiency. A subset of the MMMT system —
video encoder and decoder for videophone mode — is modeled with the work-
load variation of a PBPAIR encoder [7] and an H.263 decoder [16]. The network
zone information is assumed to be given and the hardware implementation is
from [17,18].

For the system realization, we use the Simics [19] full system simulation plat-
form, capable of simulating target systems that include real network connection
and run operating systems and workloads. Specifically, we use the Simics model
of a PowerPC-based Ebony card [17] with a PPC440GP processor [18] that boots
Linux 2.4. The execution profile from the Simics environment is reported and
used to the formal specification via a real network (port forwarding feature in
Simics). As explained in Section 5.2, execution profile from the system realization
is fed back into the formal model to enhance the solution quality.

6.2 Model Refinement

Modeling with formal executable specifications, rather than implementing simu-
lators of distributed systems under consideration, enables us to carry out formal
analysis (e.g., statistical model checking and quantitative analysis). However,
there exist opportunities to improve the formal model to adapt to the system
dynamics. For this purpose, we allow model refinement from observed system
execution behavior by equipping the controller with a loop to experiment with
the system realization.

Figure 5 illustrates model refinement based on the dynamic system execution
behavior from a system realization. The formal specification initially models the
execution times of each task as a function of BCET and WCET from samples,
and performs verification/evaluation of the given policies based on that model
shown as phase1 in the Figure 5(a). The Maude traces followed by statistical
quantitative analysis provide the initial estimations up to time t1 in Figure 5(a).
Since obtaining execution behavior from the system realization usually takes
much longer time than formal analysis (e.g., in our case, it is of the order of
hundreds times slower than formal analysis), it is beneficial to find the best policy
by formal analysis first. At time t2, the system realization starts generation of
the BCET and WCET that reflect the actual executions as described as event3
in Figure 5(a). Then, the formal model is refined by updating BCET and WCET
to enhance the analysis results as shown between t2 and t3 (phase3).

Let us take an example. At time t0, the formal specification models PBPAIR
execution with [BCET, WCET] as [109 msec, 202 msec]6, and provides the anal-
6 These profiled values are from [7] for various video inputs.
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Fig. 5. Experimental Results: Model Refinement and Proactive Control

ysis results s1 to s4 for four different policy/parameter selections (A,B, C, D) in
Figure 5(b), respectively. Since our system realization reports dynamic execution
of PBPAIR as shown in Figure 6, we can refine [BCET, WCET] to be [66 msec,
125 msec] that leads to formal analysis results s5 to s8 in Figure 5(b). Further-
more, we adjust the parameter of the frame encoding time distribution model
in the formal specification since many frame encoding times are close to BCET
as shown in Figure 6. Instead of simply providing simulated [BCET, WCET] as
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Fig. 6. Dynamic Execution Behavior of PBPAIR

the parameter of the normal distribution model explained in Section 5.2, we use
the actual average execution time observed from the system realization. Formal
analysis results s9 to s12 in Figure 5(b) show a better approximation (i.e., closer
to the estimation based on dynamic execution behavior from system realization)
due to this adjustment.

It should be pointed out that phase1 (initial formal analysis) and phase3

(enhanced formal analysis) takes much less time than phase2 (running a system
realization). The goodness of a policy/parameter selection, however, remains
same through phase1 to phase3. This indicates that on-the-fly, light-weight for-
mal verification can be effectively used in adaptation by rapidly narrowing down
the search space of potential policies and parameters. Furthermore, the qual-
ity of adaptation can be improved by combining formal analysis with observed
system execution behavior.

6.3 Proactive Control

As we mentioned in Section 4, we exploit a priori information on a user’s mobility
(e.g., current zone, speed, and trajectory, etc.) and network situation (e.g., packet
loss rate, delay, etc.) to select among policies and related parameter tuning before
the user enters a new zone. The mobility information is used to identify the
network situation in the current zone and to anticipate the next zone based on a
user’s speed and trajectory. Ideally, we need prediction techniques like time series
analysis [20] to model the future trends in network traffic with some defined level
of confidence (event0 in Figure 5(a)). This is, however, beyond the scope of this
paper. Currently, we assume that the next zone information is forecast by the
system realization (event1).

Figure 5 also illustrates proactive control initiated by network status update.
At time t0, the middleware layer is informed about the next zone information
that a user will reach, zone1 with 10% packet loss rate at time t4. Our framework
performs the iterative tuning process — formal execution followed by statistical
analysis (phase1) with subsequent model refining (phase2 and phase3) — for
the next zone. As a result, our framework can generate controls (event5) to
the device before the user enters the new zone (any time between t3 and t4).
Similarly, at time t5 the formal model is informed that a user will be in a zone
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with 20% packet loss rate at time t7. By the time t6, our framework can provide
proactive controls for zone2.

7 Related Work

The authors of [21] explore probabilistic model checking (PMC) in solving the
DPM problem. They obtain the optimal DPM policy by formulating the opti-
mization problem as a discrete time Markov chain (DTMC) model and solve it
using an equation solver (e.g., MAPLE [22]). Once a policy has been constructed,
its performance is validated using a probabilistic model checking (PMC) tool
PRISM [23]. Even though PMC enables experimenting with the effectiveness
of a selected DPM algorithm in a quantitative way, the challenge still remains
to determine how to actually implement a good power manager that considers
complex system dynamics since their work is essentially a validation process for
a specific policy using an equation solver. Besides, their analysis of stochastic
systems is carried out using numerical solution techniques that are far more
memory intensive. On the other hand, our approach is to start with an exe-
cutable formal model specifying a space of possible behaviors and analyze these
possible behaviors using light-weight statistical techniques.

Model-predictive control approaches [24,25] also attempt to address power
management issues. In [24], the authors propose predictive learning to shutdown
a device by exhaustively searching over a limited look-ahead horizon. In [25], a
closed loop feedback control based on queuing theory is presented to optimize
CPU frequency. Their solution quality depends on the future events forecasted
by a mathematical model (e.g., filter). The applicability of these approaches,
however, is limited to systems having a small number of control inputs with
synthetic workloads.

The authors of [26] propose an incremental methodology to analyze the effect
of a simple time-out based DPM scheme. They start with the functional model
without timing and perform a noninterference check for behavior. Then, they
extend it to a Markovian model (i.e., the execution time of each action is mod-
eled as an exponential function) and the effect of DPM is evaluated by standard
numerical techniques. Lastly, they extend it to a general model by using profiled
information from real-world measurements and simulate it to compare the result
with that of Markovian model. Our framework can be seen as a generalization of
their work. First, since we use Maude formal executable specifications that can
have any distribution in timing by controlling the tick rule, our formal model
corresponds with their general model (a Markovian model can be treated as a
specific distribution in the general model). Their mathematical soundness is only
guaranteed when the model follows exponential timing. More importantly, our
primary focus is on-line adaptation based on abstract formal models comple-
mented by a system realization, not the validation at design time.
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8 Conclusions and Future Work

This paper presents a unified framework to develop formal analytical methods for
understanding cross-layer and end-to-end timing issues in highly distributed sys-
tems that incorporate resource limited devices, and to integrate these methods
into the design and adaptation processes for such systems. We propose itera-
tive/proactive system tuning for DRE systems and apply them in a case study
treating the videophone mode of a multi-mode multimedia terminal. The in-
tegration of formal analysis with the observation of system execution behavior
results in a feedback loop that includes the formal models, simulation, and mon-
itoring of running systems for analysis of system behavior and optimizing choice
of policies and parameters. The underlying formal executable models are mod-
erately simple to develop, and the analyses seem feasible. The experiments on a
fairly complex case study demonstrate the capability of our framework — formal
verification combining with observation from system realization — to dynamic
tuning of DRE systems.

Ongoing and future work in this project includes:
– considering of a richer class of timed properties
– policy improvement via learning
– modeling and analysis of cross-cutting concerns (e.g., reliability, security)
– carrying out a large scale demonstration with heterogeneous applications

(mission critical, multimedia) on multiple devices in a distributed network.
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