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Abstract
Adaptive resource management is critical to ensuring the

quality of real-time distributed applications, particularly for
energy-constrained mobile handheld devices. In this context,
an optimization that simultaneously considers multiple layers
(e.g., application, middleware, operating system) needs to be
developed for continuous adaptation of system parameters. The
tuning of system parameters greatly affects the system’s abil-
ity to meet QoS requirements, and also directly affects the en-
ergy consumption and system robustness. We present a novel
approach to developing cross-layer optimization for resource
limited real-time distributed systems, based on a constraint
refinement technique combined with formal specification and
feedback from system implementation. Our approach tunes the
parameters in a compositional manner allowing coordinated
interaction among sub-layer optimizers that enables holistic
cross-layer optimization. We present experiments on a real-
istic multimedia application which demonstrate that constraint
refinement enables us to generate robust and near optimal pa-
rameter settings. The constraint language can be used as an
interface for composition by encapsulating the details of local
optimization algorithms.

1 Introduction

Next generation mobile embedded applications are highly
networked, and involve end-to-end interactions among multiple
layers (application, middleware, OS, hardware architecture) in
a distributed real-time environment. The dual goals of ensur-
ing adequate application QoS (Quality of Service, expressed as
timeliness, reliability, and accuracy) and optimizing resource
utilization at all levels of the system presents significant chal-
lenges. Therefore, we need to provide a unified framework that
enables system designers to analyze designs in order to study
design tradeoffs across multiple layers and tune the system pa-
rameters while predicting the possible property violations as
the system evolves dynamically over time.

Especially, a distributed multimedia application requires fre-
quent policy and parameter tuning based on user input and/or
node/network conditions (e.g., residual power level, packet
drop rate, noise level, etc.). As we see from the layered view
of a device in Figure 1, policy selection determines how de-
cisions are made at different layers: a specific video encod-
ing/decoding algorithm at the application layer; network mon-
itoring at the middleware layer; and DVS (Dynamic Voltage
Scaling [5]) at the OS layer. Network traffic shaping and/or
trans-coding at the middleware layer can be also utilized. Each
policy has parameters that can be set to fine-tune the behavior.
The policy itself can be regarded as a discrete parameter. In
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Figure 1. CrossLayer Optimization Framework

addition, there are hardware parameters that can be set.

Clearly, in such a scenario, policies made at one layer can
affect behavior at other layers. Thus a holistic cross-layer opti-
mization is needed [13, 16]. However, a global approach to the
holistic optimization that is fully aware of the complex system
dynamics can introduce high overhead. Therefore, we propose
a compositional cross-layer optimization by coordinated inter-
action among local (sub-layer) optimizers through constraint
refinement. The constraint refinement allows encapsulation of
detailed system state information. The key idea underlying the
compositional optimization is that each local optimizer uses
refinement results of other optimizers as its constraints. The
constraint representation can be used as the generic interface
among different local optimizers, leading to substantial im-
provement of solution quality at low complexity.

Comprehensive analysis of cross-layer QoS-energy trade-
offs and coordinated interaction enable us to tune policy pa-
rameters of highly resource limited devices. In our chosen
multimedia application, our approach selects policy parame-
ters, such that the objective function (balancing QoS and en-
ergy requirements) is optimized while meeting basic QoS re-
quirements (e.g., timing, frame drop, etc.) for the individual
tasks. Our experimental results indicate that the compositional
cross-layer optimization produces solutions that are reasonably
close to those produced by a global approach, but with signifi-
cantly less complexity. Furthermore these solutions are robust
to small perturbations, making our approach applicable in a re-
alistic dynamic setting.

2 Cross-Layer Optimization Framework

Before we dive into the compositional cross-layer optimiza-
tion by constraint refinement, we clarify the scope of this work.
Figure 1 presents our framework that employs iterative tuning
using light-weight, on-the-fly formal verification with feedback
from system execution for dynamic adaptation. We take three



major steps: (1) formal modeling, (2) analysis and optimiza-
tion, and (3) model adaptation and proactive control.

In Figure 1, Box A represents the formal model. The core of
our formal modeling approach is to develop formal executable
models of system components at each layer of interest. These
models express functionality, timing, and other resource con-
siderations at the appropriate level of detail and using appropri-
ate interaction mechanisms (clock ticks, synchronous or asyn-
chronous messages). Models of different layers are analyzed
in isolation and composed to form cross-layer specifications.
Detailed explanation of our model representation and use of
Maude [2, 1] as a reasoning tool based on the rewriting logic
formalism [12] can be found in [8].

Box B in Figure 1 shows the evaluation phase of given spec-
ifications to generate statistics of monitored properties and val-
ues. Specifically, we have advanced existing analysis tech-
niques by combining statistical and formal methods, and ap-
plied them to a case study that treats the videophone mode of a
multi-mode multimedia terminal [8].

Using such models and analysis, tools can be developed
to map adaptive system specification into appropriate pol-
icy/parameter settings. In [7], we proposed an iterative tuning
strategy that combines formal methods with dynamic system
execution behavior (obtained from either a simulation or an im-
plementation). The execution behavior from system realization
(Box C in Figure 1) is fed back into the formal modeling to
refine the executable specification (model adaptation). In addi-
tion, we can assure the quality of a new policy/parameter con-
structed by the controller. In Figure 1, Pre-testing on a system
realization can lead to improvements because typically the for-
mal model can not cover all the possible implementation details
of a real system (proactive control).

Continuing this line of research, the focus of this paper is
the policy/parameter selection (controller in Box B) for cross
layer optimization. The continuously adapting formal models
provide the predictive capabilities needed for the compositional
cross-layer optimization.

3 Preliminaries

In this section, we define the terminology (policy, parame-
ter) for our target application1 and the key assumptions under-
lying our approach followed by a formal problem statement.

3.1 Terminology and Assumptions

We consider proactive PBPAIR (Probability-Based Power-
Aware Intra Refresh) [6] as an application layer policy. The
PBPAIR scheme inserts intra-coding (i.e., coding without ref-
erence to any other frame) to enhance the robustness of the en-
coded bitstream at the cost of compression efficiency. Intra-
coding improves error resilience, but it also contributes to re-
ducing encoding energy consumption since it does not require
motion estimation. If PBPAIR is selected as an application
layer policy, then algorithm-specific parameters such as the In-
traTh (intra threshold) value must be chosen for appropriate
execution. We also consider buffer size estimation as an ap-
plication layer policy to balance the power consumption and

1 The methodology itself can be applied to systems with tuning parameters

(beyond multimedia systems) if the solution space (=utility function) exists
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Figure 2. Types of Requirement

QoS by allocating appropriate size of buffer [14]. In the OS
layer, the DVS parameter Deadline Completion Ratio [3] —
the tolerance level of QoS in terms of task completion that sat-
isfies its deadline — is tuned. Note that the parameter selec-
tion at one layer affects other layers. For example, PBPAIR in-
creases intra-coding by lowering the IntraTh parameter when
there is high network packet loss (monitored at middleware
layer), which impacts the DVS decision at OS layer since the
execution profile of the application is changed.

We next state our key assumptions: Our application is a firm
real time system with QoS requirements, and the goal is to max-
imize the QoS in an energy-efficient way while satisfying all
requirements.

• Requirements — We define two types of requirements: soft
and hard requirements. As described in Figure 2, the situation
that the system behavior resides below the soft requirement is
the most desirable. When the system is observed in between
soft and hard requirement, however, the controller needs to
tune the parameters to utilize the tradeoff between QoS and
the energy consumption. We also assume that there is an up-
per limit, above which a user cannot tolerate the quality degra-
dation (hard requirement). For instance, assume that the soft
requirement and hard requirement for deadline miss ratio are
given as 5% and 20%, respectively. A user, i) cannot allow any
parameter settings that lead to the deadline miss ratio over 20%,
ii) is willing to tolerate more deadline misses up to 20% to re-
duce energy consumption, iii) accepts any parameter settings
whose deadline miss ratio is below 5%.

• Objective — We define a utility function that captures the
effectiveness of given parameter settings. The utility is a func-
tion of energy consumption, QoS (timing violation, frame drop
ratio), bandwidth demand, and buffer size estimation. Specif-
ically, we use a weighted sum of the evaluation functions of
each component.Figure 3 presents an example of utility distri-
bution according to the various parameter settings. In Figure
3(a), there are parameter settings that lead to zero utility mean-
ing that a hard requirement is violated. Traditional optimiza-
tion methods (e.g., simulated annealing) may pick any solution
point with maximum utility such as p1, p2, and p3 in Figure
3(b). Those solutions, however, cannot guarantee reliable per-
formance in a dynamically changing environment since small
perturbations of the parameters may lead to large drop in utility.
In this context, operating in the refined region ref1 in Figure
3(c) is more desirable for system robustness.

3.2 Problem Statement

Given a system specification (parameters and observables)
and a method to evaluate solutions (utility and requirements),
our problem is to find settings of parameters that maximize the
system utility (considering the trade-off between energy and
QoS), while ensuring that the solution guarantees a certain level
of robustness. A solution means choosing the parameters for
each policy — IntraTh, BufSize, and DeadlineCompletionRa-
tio. Using this two layer (Application and OS) scenario, our
problem is described more formally below:
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Figure 3. Utility Distribution: Effect of the Parameter Settings on Varying IntraTh (Application Layer) and

DeadlineCompletionRatio (OS Layer) with Buffer Size (a) 1 Frame, (b) 4 Frames, and (c) 7 Frames

Input– Parameters, Observables: The parameters (depicted
as controls in Figure 1) at each layer and the observables (from
system execution by using formal specification and/or system
realization in Figure 1) provide different aspects of system dy-
namics.
• Parameter Space P is a Cartesian product of the parameter
spaces of all layers (e.g., P = PApp×POS with PApp = R×N

and POS = R). For instance, ((0.5, 3), 0.7) ∈ P represents the
parameter settings of 50% IntraTh, 3 frames BufSize (Applica-
tion layer), and 70% DeadineCompletionRatio (OS layer). We
assume that P is equipped with the natural ordering < induced
by the orderings of its components.
• Observation Space O is a Cartesian product of all possi-
ble observation results for each observable (e.g., O = R ×
R × · · · × R). For instance, (0.14, 0.03, · · · , 3.78e+7) ∈ O

represents 14% DeadlineMissRatio, 3% FrameDropRatio, and
3.78e+7(uJ) EnergyConsumption, respectively.
Input– Requirements, Utility Function: The system utility U
is evaluated by a function of soft/hard requirements Q (Section
3.1) and observables O (results of parameter setting).
• Utility U : P×O → R can take many forms (e.g., a weighted
sum). For instance, we assume U = wAppuApp + wOSuOS

where wlayer and ulayer correspond, respectively, to the weight
and utility function (based on Q and O) of layer. Now we de-
fine U∗ : P → R, i.e., U∗(p) = U(p,M(p)), where M is a
model (formal executable specification) and M(p) is the obser-
vation given by M for parameter p.
Note that a system model M is not constant due to dynamic-
ity and non-determinism of a system, and we allow our formal
model to effectively reflect on-the-fly system behavior (model
adaptation in Figure 1).
Problem Objective: For the given P, O, Q, and U , the ob-
jective is to determine a refined region P of parameter settings
with a certain level of guarantee on the utility.
Now, we define a region P over P.
• Region P ∈ R(P) ⇐⇒ P ⊆ P is a closed convex set, (i.e.,
if (x, z ∈ P )

∧
(x < y < z), then (y ∈ P )) and P is finitely

representable (e.g., interval-based). Then, the objective is to

find a refined region P ∈ R(P) such that Û∗(P ) : R(P) → R

is maximized and size(P ) = size(P) · τ , where size(P ) is
a suitable measure of the size of a convex set P (e.g., area or
volume), τ represents the refinement ratio (0.0 < τ < 1.0)

and Û∗(P ) can be defined to fulfill various optimization goals.

For example, to maximize the average of utilities in P , Û∗(P )

can be defined as Û∗

avg(P ) = avg{U∗(p)|p ∈ P}. On the

other hand, Û∗

min(P ) = min{U∗(p)|p ∈ P} can be used for

maximizing the minimum of utilities in P .

4 Proposed Approach

Typical optimization techniques [11, 4, 13, 16] provide a
single best design point for a given system specification and
utility function. We discuss the potential drawbacks of those
techniques — that find a single parameter setting p such that
U(p) is maximized — in the following:
• Lack of Robustness — The system model M needs to be
adaptive to reflect the dynamic nature of the system (e.g., net-
work status keeps changing based on a user’s mobility). Be-
sides, there is non-determinism (i.e., randomness) in the model
as well as run-time variation such as data-dependent execution.
Under such high dynamicity, reliable optimization becomes an
issue. Therefore, we focus on providing a near optimal solution
region P (rather than a single point p) that can further provide
useful information on robustness and performance of the ob-
tained solution space.
• Lack of Composability — As the system gets more complex,
integrated treatment of individual optimizers with its own re-
quirements and objective is important. In this case, one pa-
rameter setting pa obtained by an optimizer opta can adversely
affect the other optimizer optb, since pa can over-restrict the so-
lution space of optb. Our constraint refinement additionally en-
ables us to support cooperative composition through the encap-
sulation of detailed optimization information using the generic
interface of a constraint representation language.

In the following, we describe our solution in some detail.
First, we explain constraint refinement for robust optimization.
Then, we define our compositional cross-layer optimization
based on this representation.

4.1 Constraint Refinement

Given an optimization problem for which the model M and
the parameter space P are complex, and for which no better
solution to find a region P ∈ R(P) is known than an extensive
brute-force search, our approach attempts to quickly find an
approximate solution by the following:

1. Recursive Resampling: We obtain observables by Monte-
Carlo sampling over the current region Pi ∈ R(P) using
the model M. Subsequently, we refine Pi to Pi+1 such that

Û∗(Pi+1) is maximized based on the samples available, and
size(Pi+1) = size(Pi) · τi, where τi represents the i-th refine-
ment ratio. The new region Pi+1 is then used as the current
region and the process is repeated.
2. Interval-based Description: For simplicity we use
regions defined by the Cartesian product of intervals for

3



P2

P1

P0

P  = Pt

. . 

Iteration

Opt.

Layer
OS

Opt.

Layer

App.

. 

Only restrict
OS layer
parameters

App. layer
parameters

Only restrict

(a)

Application

Subsystem

Middleware

Subsystem

OS

Subsystem

Hardware

Subsystem

Control ConstraintsObservables

Optimizer

OS 

Optimizer

Hardware

Optimizer

Middleware

Application

Optimizer

(b)

Figure 4. Constraint Refinement for Composition

(a) Parallel Composition of Layers, (b) Composi
tional CrossLayer Optimization

each of the parameters. For example, an application layer
region might be PApp = [IntraThmin, IntraThmax] ×
[BufSizemin, BufSizemax]. Clearly, more expressive con-
straint languages are possible in our framework and should be
investigated in the future.
3. Generic Constraint-based Interface: The input (Pi) and
output (Pi+1) of each refinement step are regions (infinite sets),
and our approach lifts the level of abstraction by treating Pi as
constraints (finite symbolic representations) when we restrict
the resampling space to find Pi+1.

The process of constraint refinement can be stated as

P = P0 ⊇ P1 ⊇ P2 ⊇ · · · ⊇ Pt = P

where P is the set of admissible parameter settings at termina-
tion after t iterations.

Our experimental results indicate that the constraint refine-
ment can be effectively used for robust parameter selection.
One key feature of this approach is that we can coordinate par-
allel composition of individual optimizers as illustrated in Fig-
ure 4(a). Each sub-layer optimizer controls a subset of parame-
ters. For instance, the application layer optimizer only restricts
its own parameters (PApp) while the OS layer optimizer only
restricts OS related parameters (POS). The constraints Pi are
used as inputs and outputs of individual (sub-layer) optimizers.

Composition through constraint refinement reduces the pos-
sibility of conflicts because of the more general notion of a so-
lution compared with traditional single point optimizers. More
importantly, constraint refinement enables simple yet powerful
cross-layer optimization via composition (Figure 4(b)), as dis-
cussed in the next Section.

4.2 On-line Cross-Layer Optimization

The primary goal of our framework is to enable on-line
cross-layer optimization that provides the refined parameter
settings from which a system can select any suitable operat-
ing point within the region as explained in Section 4.1. The
constraint refinement allows encapsulation of detailed system
optimization information. This opens up the possibility of coor-
dinated interaction (composition) instead of relying on a global
view. Figures 5 and 4(b) compare the global vs. local vs. com-
positional approach for cross-layer optimization. The key idea
underlying the compositional optimization is to exchange the
local optimizer’s decision for an informed selection. This al-
lows us to achieve a balance between global optimization’s full
awareness with high overhead and local optimization’s mini-
mal complexity with poor solution quality.

More specifically, each local optimizer uses the other opti-
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tions (a) Global CrossLayer Optimization, (b)
Without CrossLayer Optimization

mizer’s refinement results as its constraints. As an example,
if the application layer optimizer refines the PBPAIR parame-
ter IntraTh to [20%, 80%] and BufSize to [2 frames, 5 frames],
then the OS layer optimizer refines its parameter DeadlineCom-
pletionRatio to [50%, 100%] taking the application layer pa-
rameter ranges as constraints. The OS layer results are trans-
mitted to the application layer optimizer for further refinement.
Thus, the constraint language can be used as the generic in-
terface among different local optimizers, leading to substantial
improvement of solution quality at low complexity.

A similar strategy can be applied to other optimization tech-
niques (e.g., simulated annealing [9, 10]). The strict conver-
gence to a single point, however, may not be achievable in the
sense that at each step the intermediate parameter settings may
be totally different from the previous iteration. For instance, if
the application layer chooses high IntraTh to reduce the energy
consumption, the OS layer is informed about high IntraTh and
tunes its parameter DeadlineCompletionRatio to a high value
since high IntraTh indicates less workload from the OS per-
spective. Then, this high DeadlineCompletionRatio is trans-
mitted to the application layer, which may cause it to decrease
IntraTh since it can be interpreted as sufficient slack time in the
system for further encoding quality upgrade by decreasing In-
traTh. These types of abrupt and/or constant parameter changes
are not desirable in practice. Constraint refinement can still un-
dergo constant parameter changes, but with lower impact since
any parameter settings (pi) within the region (Pi) can be cho-
sen, and the probability that pi is valid after the next iteration
(pi ∈ Pi+1) is proportional to the refinement ratio. We can also
easily see that the situation will worsen with conflicting local
objectives.

It should be pointed out that our approach is not limited to a
specific constraint refinement protocol scheme. Compositional
optimization through constraint refinement enables a controller
to coordinate existing optimizers (possibly distributed) that can
accommodate different objectives by treating them as black-
boxes, which in turn permits to process them in parallel. Dif-
ferent solutions obtained in parallel can be unified by taking
the intersection, which corresponds to the conjunction at the
symbolic level.

5 Experiments

We evaluated the effectiveness of our approach by carrying
out a variety of experiments. Our first set of experiments fo-
cused on global constraint refinement for the reliable optimiza-
tion of a mobile multimedia system. In our second set of exper-
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iments, we focused on the effect of composition in the context
of on-line cross-layer optimization.

5.1 Constraint Refinement

Figures 6 and 7 show the results of parameter setting and
utility statistics from different optimization techniques. We
present 100 optimization results for our mobile multimedia sys-
tem — parameter settings and utility statistics — using the util-
ity distribution in Figure 3. We compare our constraint refine-
ment with simulated annealing (SA) [9]. Specifically, we im-
plemented a simulated annealing method with adaptive neigh-
bor feature for the continuous parameter optimization proposed
in [10].

In Figure 6(a) and 7(a), we see the parameter settings from
simulated annealing and constraint refinement for maximizing
the average of utilities, respectively. For fair comparison, we
use same number of samples (evaluations of the model M) as
in simulated annealing. We also use uniform refinement ratio
τ̄ (i.e., τ0 · τ1 · · · τt−1 = τ and ∀i ∈ [0, · · · , t − 1] : τi = τ̄ )

and a constant number of iterations t. In each figure, the X-
axis represents the application layer parameter IntraTh while
the Y-axis represents the OS layer parameter DeadlineComple-
tionRatio. The BufSize parameter is pictured in different col-
ors. In the case of simulated annealing, the parameter setting is
represented as a distinctive point. Constraint refinement, how-
ever, provides a region represented as cross bars parallel with
the x-y axes. Compared to constraint refinement approaches,
simulated annealing obtains higher utility in most of the cases
(Figure 6(b)). From the implementation perspective, however,
it is practically infeasible to construct the controller with fre-
quent jumps across the entire parameter space as shown in Fig-
ure 6(a). On the other hand, Figure 7(a) and 7(c) present the
parameter settings as refined regions for different cross-layer
optimizations. Our result is more deterministic thanks to the
additional degree of freedom offered by the constraint repre-
sentation.

Utility statistics from simulated annealing, constraint refine-
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ment for maximizing the minimum of utilities, and constraint
refinement for maximizing the average of utilities are presented
in Figure 6(b), 6(c), and 7(d), respectively. We present dif-
ferent optimization results (X-axis) in terms of utility statistics
(Y-axis with minimum-average-maximum). As we mentioned
earlier, one advantage of constraint refinement is its ability to
determine robust parameter settings (in form of a region that in-
cludes many points with a guarantee of solution quality) even
though the average of utilities is lower than that of simulated
annealing. In many cases, the maximum utility from a re-
fined region is higher than the utility from simulated anneal-
ing, which indicates that the best parameter setting from simu-
lated annealing can be dominated by one of the multiple points
in the refined region. In addition, as shown in Figures 7(d)
and 6(c), because our constraint refinement maintains utility
statistics, not just single best options, alternative objectives may
be achieved while preserving utility: optimization of average-
case performance (Figure 7(d)) and system tuning to guarantee
worst-case bound (Figure 6(c)).

5.2 On-line Cross-Layer Optimization

Our discussion so far indicates that constraint refinement can
be effectively used for reliable parameter selection. In next set
of experiments we study the effect of cross-layer optimization.
The results are presented in Figure 7. For these experiments, we
use constraint refinement in individual (sub-layer) optimizers
to optimize for the average-case performance (i.e., maximizing
the average of utilities). We first consider the two extremes:
without cross-optimization (i.e., local optimization) in Figure
7(b),(e) vs. global optimization in Figure 7(a),(d). For the local
optimization without cross-layer concerns, there is much higher
chance of a failure (6% vs. 0% in case of global/compositional
optimization) — parameter settings leading to the hard require-
ment violation — during the execution as indicated as zero util-
ity in Figure 7(e).

By contrast, compositional cross-layer optimization in Fig-
ure 7(c),(f) presents reasonably close solutions to the global
approach in the sense that the compositional approach does not
introduce undesirable parameter settings that result in a failure,
and the average utility resides between that of local and global
optimization. The relative execution time of our compositional
approach is longer than the local optimization (without any co-
ordination) and shorter than the global approach (most com-
plex). One last remark is that the refined region determined by
local optimizers is very different (huge difference in BufSize)
from that of global approach while our compositional optimiza-
tion gives similar results.

6 Related Work

The authors of [11, 4] study the issues of cross-layer opti-
mization as a new paradigm for network architecture to make
better use of network resources by optimizing the boundaries
of traditional network protocol stack layers. Especially, [11]
presents a survey of the recent research towards a systematic
understanding of “layering” as “optimization decomposition”,
where the overall communication network is modeled by a gen-
eralized network utility maximization problem. Those efforts
are, however, mainly focused on the architectural decisions in
networking, not tuning the system parameters for QoS-energy
optimization.

In [15], the authors extend the idea of predictive learning

by exhaustively searching over a limited look-ahead horizon to
distributed systems. In particular, they suggest a multi-level
decentralized control structure where components have inde-
pendent local controllers, and the interaction between these
components is managed by a global controller that addresses
system-wide QoS requirements. Their approach is essentially a
horizontal (non-layered) composition with a hierarchy. Unlike
our approach, they exchange the control information through a
high level controller that generates global control for each local
controller. Our work is different in that the composition can be
fully distributed and capable of utilizing different even conflict-
ing local objectives through the generic interface of a constraint
language.

7 Conclusion

In this paper, we analyzed cross-layer QoS vs energy is-
sues in resource limited devices, and dynamically tuned system
parameters. More specifically, we proposed a compositional
cross-layer optimization by coordinated interaction among lo-
cal optimizers through constraint refinement. Our experiments
on composition by refinement for treating a realistic multime-
dia application demonstrated the capability of our approach to
generate robust and sufficiently good parameter settings that
further can be used as a basis of local optimization. In fu-
ture work, we will extend our methodology to consider mul-
tiple distributed nodes as local optimizers (scalability to hori-
zontal composition). In particular, we plan to construct an in-
terface language for generic composition (e.g., negotiation and
contract) and focus on carrying out a large scale demonstration
with heterogeneous applications (mission critical, multimedia)
on multiple devices in a distributed network.
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