
FORMALIZING ELABORATION TOLERANCE

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Aarati Parmar

August 2003

c© Copyright by Aarati Parmar 2003

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

John McCarthy
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Richard Fikes

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Johan van Benthem
(Philosophy)

Approved for the University Committee on Graduate

Studies:

iii

Abstract

This thesis examines the concept of elaboration tolerance. A representation, whether

it be a logical theory, computer program, or even Bayesian network, is elaboration tol-

erant to the extent it is easy to change to represent new facts. Natural language is the

model for elaboration tolerance; in everyday discourse one can easily and succinctly

change one’s declarations by adding an extra sentence or two.

This thesis has two major contributions. The first is a framework which eluci-

dates how the semantics of a representation affects its elaboration tolerance, and the

viability of principles that promote elaboration tolerance.

The second contribution is a thorough examination of what we call additive elabo-

ration tolerance. In this paradigm, a representation is modified simply by adding the

formula whose meaning corresponds to the desired change. This modality of changing

representations is attractive because it avoids ”brain surgery” – we do not have to

tinker explicitly with the representation at all. We show how to endow a given repre-

sentation S1 with additive elaboration tolerance by embedding it in another system

SAb · S1 = S1,Ab. This embedding is intuitive as it models human discourse. It is also

sound, preserving facts true in the original representation.

Elaboration tolerance shares concepts with the fields of belief revision and refor-

mulation. We explore how the AGM postulates relate to our construction S1,Ab. We

also show how standard problems of nonmonotonic reasoning can be re-framed in

terms of searching for elaboration tolerant representations of commonsense theories.

We conclude with deeper insights about elaboration tolerance, and its importance to

the future of the logical AI program.

iv

Acknowledgments

I could not have come this far without the support of my mom and dad. Their

encouragement and dedication to my education have been fundamental to my success.

I have been fueled by the immense confidence my younger siblings, Anju and Abhis,

have in me. Even our dog Amy contributed, as her enthusiasm for long walks gave

me a forum in which to meditate upon my ideas.

My sequence of academic endeavors begins with my teachers. Mrs. Stanton

introduced me to my first computer in fifth grade at Episcopal Day School, and I

have been happily programming them ever since. Somehow Mrs. Kim, taught me

the formidable subject algebra without me even realizing it, thinking it was only

“Advanced Math.” My Master’s thesis advisors at MIT, Helen Meng and Stephanie

Seneff, sparked my passion for research and solving problems. They are the reasons

I came to pursue a doctorate in Computer Science at Stanford University.

At Stanford, my first run-in with my advisor showed me the importance of logic.

In the Spring of 1997, John McCarthy, father of artificial intelligence, described to

me his recent formalization of speech acts, Elephant 2000. I was amazed to learn

that Elephant was not programmed in any particular language (not even LISP!), but

consisted entirely of a formalization in logic. As I have realized since then, this logical

approach makes the essence of the behavior explicit through formal sentences, rather

than only approximating it through some computer program. This observation led

me to my exciting journey into logic and higher mathematics.

This journey was lit by three main beacons. Solomon Feferman introduced me

to the fundamentals: logic, model theory, recursion theory, and set theory. Grisha

Mints took me on a engaging tour of what can be done with logic, such as formalizing

v

choice operators and using intuitionistic logics. Johan van Benthem took the stark,

impassive mathematical concepts of modal logics and turned them into fanciful games

and puzzles over which it was (is) a joy to ponder.

But my lighthouse is my advisor, John McCarthy. Ever since I wrote my first set

of computer programs I wanted to find out how to make them smarter. I knew there

was a methodology for doing so, but I did not know what it was till I met John. I

am lucky to have such an insightful, intellectually stimulating advisor, with such an

elegant, principled approach for building intelligent robots. The bonus is that John

knows a lot of funny jokes and amusing anecdotes.

My friends and colleagues here at Stanford made this trip worthwhile, from my

fellow students Greg, Liadan, Neil, Karen, Karl, Diane, . . . , to my special AI posse

Tom, Eyal, Lise, Xavier, Pedrito, Ursula, Simon, Uri, and Gleb. Special thanks go

to Guha, Patrick, Satish, Kelly, Rob, and Mike S. I am also grateful for the guidance

of my colleagues Daphne, Richard, Ed, Sheila, Vaughan, Mike, Berthe, Paulo, and

Selene. Also, my final year would not have been nearly as fun without my officemates

Neil and Joey, and our honorary one, Ron. Never again shall I witness such amazing

simulations of bouncing rubber bricks and deflating statues.

I want to also acknowledge the members of my reading committee for their patience

with this work. I am particularly grateful for the time they spent carefully reading

this thesis and helping me make it better.

Finally, this thesis would not have been possible without the guidance of my

“doctoral dissertation manager,” Paul. Paul’s faith is what powered the last leg of

this long journey, and it is only because of him that this product was “shipped out the

door,” on time. I owe him a great deal, the magnitude of which (ironically) cannot

be properly represented in any declarative formalism.

This research has been partly supported by SNWSC contract N66001-00-C-8018

as well as a National Science Foundation Graduate Research Fellowship.

vi

Contents

Abstract iv

Acknowledgments v

I Introduction to Elaboration Tolerance 1

1 Framework and Motivation 2

1.1 The Necessity of Elaboration Tolerance 3

1.2 Additive Elaboration Tolerance . 5

1.3 Thesis Roadmap . 7

2 Previous Work on Elaboration Tolerance 10

2.1 Introduction . 10

2.2 The Original Paper on Elaboration Tolerance 11

2.3 Elaboration Tolerance and the Frame Problem 12

2.4 A Syntactic Approach to Elaboration Tolerance 14

2.5 Approaches Based on Logic Programming 15

2.5.1 Specifications of Programs . 15

2.5.2 Dynamic Logic Programming 16

2.6 Elaboration Tolerant Solutions to the MCP 19

2.6.1 The Causal Calculator . 19

2.6.2 Object-Oriented Temporal Action Language 21

2.6.3 Evaluation of the Two Approaches 22

vii

3 General Principles of Elaboration Tolerance 24

3.1 Initial Framework . 24

3.2 First Principles of Elaboration Tolerance 30

3.3 Understanding Elaboration Tolerance 31

3.4 Design Principles of Elaboration Tolerance 36

3.4.1 How to Construct Relations 37

3.4.2 Syntax Matters, or Reification is Important 39

3.4.3 Synthetic Functions, or Operator Splitting 41

3.4.4 The Unique Roles Assumption 43

II Additive Elaboration Tolerance 48

4 Additive Elaboration Tolerance 49

4.1 Why Additive Elaboration Tolerance? 49

4.2 Tenets and Groundwork . 50

4.3 Retraction and Addition of Formulas 53

4.3.1 Retractable Formulas . 54

4.3.2 Addable Formulas . 56

4.4 A Simple System with Full Retraction and Full Addition 60

4.5 Properties of Additive Elaborative Tolerance 67

5 Extended Axiomatic Formal Systems 69

5.1 Extended Axiomatic Formal Systems 70

5.2 The Semantics of Extended Axiomatic Formal Systems 70

5.3 Choice Functions . 71

5.4 Extended Axiomatic Formal Systems with Choice 75

5.5 Definitions of Full Retraction and Full Addition 76

5.6 Properties of Full Retraction and Addition 78

5.6.1 Elaborations Can Be Sequenced 78

5.6.2 The Infinitary Requirement of Full Retraction and Addition . 79

viii

6 Combining Extended Axiomatic Formal Systems 81

6.1 Combining Languages . 82

6.2 Combining Semantics . 82

6.3 The Combined System S1,2 = S2 · S1 84

7 The Combined System S1,Ab 86

7.1 Constraints on S1 . 86

7.2 Properties of SAb . 87

7.3 A Summary of S1,Ab . 88

8 S1,Ab Has Full Retraction and Addition 90

8.1 The Class of Elaborative Formulas ΨE 91

8.2 Retraction of Formulas and Labels 92

8.3 Non-Empty Choice Functions . 93

8.4 Conditions for Full Retractability . 94

8.5 Full Retraction and Addition Theorems 94

9 Properties of S1,Ab 96

9.1 Full Retraction and Addition in Action 97

9.2 Our Construction S1,Ab is Sound . 98

9.3 Systems with Full Retraction and Addition 99

9.4 The Power of Syntax in S1,Ab . 100

9.5 Changing Parameters . 102

9.6 Compaction of S1,Ab . 104

9.7 Related Systems to and Notes about S1,Ab 106

III Extensions 109

10 Elaboration Tolerance and AI Formalisms 110

10.1 Belief Revision . 110

10.1.1 Overview of Belief Revision 111

10.1.2 Elaboration Tolerance versus Belief Revision 116

ix

10.1.3 S1,Ab and Belief Revision . 118

10.1.4 Formal Connections between Frameworks 119

10.2 Reformulation . 127

10.2.1 Overview of Reformulation . 127

10.2.2 Elaboration Tolerance Versus Reformulation 128

10.3 Bayesian Networks . 128

10.4 Neural Networks . 129

11 Elaboration Tolerance and AI 131

11.1 The Future of Logical AI . 131

11.2 The Frame Problem . 132

11.3 Intensional versus Extensional Aspects 133

11.4 Nonmonotonic Reasoning . 135

11.5 Computability . 140

12 Future Research Directions 142

12.1 Representing Other Elaborations . 143

12.2 Implementation of Elaboration Tolerant Systems 144

12.3 Database Indexing . 145

12.4 An Elaboration Tolerance Advice Giver 146

12.5 Probabilistic Systems . 146

12.6 Approximate Objects and Elaboration Tolerance 149

A Proofs 150

A.1 Proof of Proposition 5.3.1 . 150

A.2 Proof of Proposition 5.3.2 . 152

A.3 Proof of Proposition 5.4.1 . 153

A.4 Proof of Theorem 5.6.1 . 153

A.5 Proof of Theorem 5.6.2 . 154

A.6 Proof of Theorem 5.6.3 . 155

A.7 Proof of Corollary 5.6.1 . 157

A.8 Proof of Proposition 6.2.1 . 157

x

A.9 Proof of the Upwardly Free Ab Lemma 159

A.10 Proof of the Downwardly Free Ab Lemma 160

A.11 Proof of Lemma 8.3.1 . 161

A.12 Proof of Corollary 8.3.2 . 163

A.13 Proof of the Monotonic Retraction Lemma 163

A.14 Proof of the Full Retractability Lemma 164

A.15 Proof of the Full Addition Theorem 167

A.16 Proof of Theorem 9.2.1 . 169

A.17 Proof of Theorem 9.2.2 . 170

A.18 Proof of Lemma 9.2.1 . 170

A.19 Proof of Theorem 9.2.3 . 171

A.20 Proof of Corollary 9.3.1 . 172

A.21 Proof of Corollary 9.3.2 . 172

A.22 Proof of the [f ∗]`-Equivalence Lemma 173

A.23 Proof of Theorem 9.7.1 . 173

A.24 Proof of the ψ+ Covering Lemma . 178

Index 179

Bibliography 183

xi

List of Figures

3.1 The preferred worlds of R are a subset of all of worlds described by R. 28

3.2 Elaborations change the focus of preferred models. 29

4.1 Adding ψ3→4(R) to R results in switching the set of preferred worlds

where the numbers of missionaries and cannibals are both four. . . . 52

4.2 A graphical depiction of full retraction. The dots correspond to models,

and the shaded ellipses pick out sets of models. Notice how the set of

all models of Ψ ∪ R becomes smaller with the addition of ψ∅, while

the preferred ones simply change. 57

4.3 A graphical depiction of full addition. The dots correspond to worlds,

and the shaded ellipses pick out sets of worlds. Provided there is a

world describing Ψ ∪ R where α holds, we can add ψ+ to our axioms,

to change the set of preferred worlds to lie entirely within the extent

of Mod(α). Furthermore, this set of models is non-empty. The second

dotted transformation illustrates that we can always later move the set

of preferred models out of Mod(α), if there is a world remaining where

¬α holds. 60

4.4 How ψ∅(γ) carves out the space of minimal models. The gray area

represents the models of ΓAb, with the Ab-minimal models toward the

bottom. The white region represents the models of ψ∅(γ) ∪ ΓAb. Note

how it generates two incomparable sets of Ab-minimal models, one

where Ab(n+)∧¬Ab(n−) holds, and the other where ¬Ab(n+)∧Ab(n−)

holds. 63

xii

5.1 f chooses the best models of Γ. 72

xiii

xiv

Part I

Introduction to Elaboration

Tolerance

1

Chapter 1

Framework and Motivation

The notion of elaboration tolerance is originally introduced in John McCarthy’s 1988

paper on “Mathematical Logic in Artificial Intelligence,” but the intuition is very

old. A representation is elaboration tolerant to the extent that it is easy to change

in order to reflect new information. Natural language is the ultimate model for

elaboration tolerance; in everyday discourse one can easily and succinctly change

one’s declarations by adding an extra sentence. Elaboration tolerance is a desirable

property of any knowledge representation, whether it is a logical theory, a logic-

based knowledge base like Cyc, a computer program, a frame system, a Bayesian

network, a neural network, or any other AI formalism. But this desirable property

extends beyond AI representations – any system which operates on facts asserted

declaratively will be easier to update, and to use and understand, if it is elaboration

tolerant. Hence this concept applies to software systems and the World Wide Web

as well.1

Abstractly, we can view elaborations as operations e which map a particular rep-

resentation R to some desired representation R′: 2

1If we are successful, our theory of elaboration tolerance will follow in the footsteps of the best
ideas to which AI has given birth, and be adopted by mainstream computer science. Examples
include the theory of computation, timesharing, LISP, . . .

2Belief revision and reformulation are two fields that use this same method of studying repre-
sentations, albeit for different purposes. We provide an analysis of how these fields differ from our
study of elaboration tolerance in Chapter 10.

2

1.1. THE NECESSITY OF ELABORATION TOLERANCE 3

e ·R = R′ (1.1)

The more natural and simple our operation e can be to map R to R′, the more

elaboration tolerant R is. Note that e could be any kind of operation, such as adding

extra facts to R, deleting facts of R, or even rewriting parts of R. The more compli-

cated e is, the more akin it is to performing “brain surgery” on R. This neurosurgery

is undesirable because it requires the elaborator to understand more details of R. This

defeats the spirit of elaboration tolerance, where changes are easily implemented.

1.1 The Necessity of Elaboration Tolerance

A declarative approach to AI, where all knowledge is explicitly represented by sen-

tences and “thinking” involves inferences made on these sentences, will require elabo-

ration tolerance in order to be useful. [McCarthy, 1959] describes the Advice Taker, a

declarative formalism that operates solely by additions of sentences. These sentences

advise how to further manipulate other sentences. [McCarthy, 1959] gives some rea-

sons why such a system would be a good architecture for artificial intelligence (directly

quoted):

1. If one wants a machine to be able to discover an abstraction, it seems most likely

that the machine must be able to represent this abstraction in some relatively

simple way.

2. Declarative sentences have logical consequences and it can be arranged that the

machine will have available sufficiently simple logical consequences of what it is

told and what it previously knew.

3. The meaning of declaratives is much less dependent on their order than is the

case with imperatives. This makes it easier to have after-thoughts.

4. The effect of a declarative is less dependent on the previous state of the system

so that less knowledge of this state is required on the part of the instructor.

4 CHAPTER 1. FRAMEWORK AND MOTIVATION

The declarative AI approach has proven to be a viable research program. Cyc

[Cyc, 2003] is a huge knowledge base containing axioms representing common sense

knowledge. It has been successfully utilized in industry, as well as in recent DARPA

research programs such as HPKB [Cohen et al., 1998]. The Semantic Web

[Semantic Web, 2002] is a very recent undertaking to represent information on the

internet so that it can be used by machines. On the other hand, without much formal

annotation, search engines such as Google [Brin and Page, 2003] have been able to

extract meanings from billions of web pages. For example, the text query “flowers”

returns documents about flowers, including where to buy them, how to grow them,

etc.

But any declarative formalism will have to be constantly updated. It is naive for

us to believe we can build a non-trivial representation that is perfectly omniscient.

Quite the contrary, any such representation will always be only partially complete

and correct, for many reasons:

For one, language is inherently vague, often requiring re-iteration of utterances.

This concept is captured by approximate objects and theories [McCarthy, 2000]. An

object is approximate in at least two ways. The first is when details about a concept

are purposefully left out, such as a summarization. The second is more subtle, in

that the concept is inherently incomplete, and there is no way to ascertain the truth

of certain facts about that concept. Examples of these include the number of grains

that determine a heap, or the welfare of a chicken [McCarthy, 2002a].

Approximate entities abbreviate facts, so that one is not distracted by irrelevancies

or inadequacies, thereby enabling efficient reasoning. But when necessary, they can be

mapped to more or less approximate concepts. This movement from an approximate

entity to a less approximate entity (or vice versa) is essentially an elaboration, since we

are adding more details or refining a concept. We suspect that approximate objects

can only be represented by means of elaboration tolerant formalisms, as they are

inherently elaboratable. Elaboration tolerant representations will provide a platform

from which we can better understand the formal nature of approximation.

There is a related need for easy update. [Kent, 1978] notes that there are (at

least) a denumerable number of concepts, but we only have a finite number of words to

1.2. ADDITIVE ELABORATION TOLERANCE 5

describe them. A word will correspond to “a cluster of more or less related concepts.”

Thus, there will inevitably be confusion between a speaker’s and listener’s intended

meaning of an utterance. In this case, elaborations will be absolutely necessary to

convince the listener of the intended meaning.

Finally, as science progresses, new facts will be added to man’s repository of

knowledge. Intelligent systems must be able to absorb these new facts seamlessly to

be useful.

These factors explain why any human-level AI declarative representation will re-

quire elaboration tolerance. Touching on some of these arguments, [McDermott, 1978]

hints at the elegant solution of additive elaboration tolerance:

After all, a practical program will never be “finished”; it would be nice to

know that whatever fragment of one exists will maintain its integrity as

new rules are added or new applications are made of old rules. We would

like our programs to be “additive,” that is, to be able to assimilate new,

correct rules from experts without destroying the correctness of old ones.

1.2 Additive Elaboration Tolerance

Additive elaboration tolerance is concerned with representations that admit only one

modality for change: adding formulas. A representation has additive elaboration

tolerance if natural changes can be applied to it, simply by adding the appropriate

formula. In the language of (1.1), R has additive elaboration tolerance when we can

map R to R′ by the operation: 3

e ·R = ψe(R) ∪ R = R′ (1.2)

This simple means of altering representations is desirable for many reasons. For

one, it is the means by which human discourse works; certainly a sentence, once

uttered, cannot ever truly be retracted. When speaking, one can only add statements

3ψe depends on R in (1.2) because ψe could be context-sensitive – its construction could depend
on the structure of R.

6 CHAPTER 1. FRAMEWORK AND MOTIVATION

to change the interpretation of previously uttered sentences. The second reason stems

from the previously mentioned Advice Taker formalism:

The advice taker is a proposed program for solving problems by manipu-

lating sentences in formal languages. The main difference between it and

other programs or proposed programs for manipulating formal languages

(the Logic Theory Machine of Newell, Simon and Shaw and the Geometry

Program of Gelernter) is that in the previous programs the formal sys-

tem was the subject matter but the heuristics were all embodied in the

program. In this program the procedures will be described as much as

possible in the language itself and, in particular, the heuristics are all so

described.

We want our elaborations to be expressible within the language of the target rep-

resentation, so that we can reason about them as well. Additive elaboration tolerance

forces this to be the case, as in this paradigm, all elaborations must be declaratively

specified, within the logic. Ultimately, we are pushing all of our operations on R one

level down into the language itself. Thus the problem of additive elaboration toler-

ance reduces to studying the expressivity of a representation and how it reacts to the

addition of formulas. 4

But why is this such a worthy goal? We continue our perusal of [McCarthy, 1959]:

The main advantages we expect the advice taker to have is that its be-

havior will be improvable merely by making statements to it, telling it

about its symbolic environment and what is wanted from it. To make

these statements will require little if any knowledge of the program or the

previous knowledge of the advice taker. [Our emphasis.]

By formulating our elaborations within the language, we absolve the user of hav-

ing to perform “brain surgery” on the representation in order to bring about some

elaboration. Instead of tinkering with the formulas of a given representation, and

4In this way, the meta-level semantics become part of the representation.

1.3. THESIS ROADMAP 7

then ensuring that the result has the intended interpretation, all he must do is add

the formula corresponding to the meaning of the elaboration to the set of axioms. It

is the semantics’ job to make sure that the formula properly encodes the change.5

This declarative mechanism, of representing our elaborations by adding formulas,

thus provides the ultimate abstraction barrier for altering representations.

From a practical point of view, this approach is also the best to follow. Any elab-

orations more complicated than additions of formulas would strongly depend upon

the structure of the formalism itself. We would be forced to study how a particular

syntactic transformation alters the semantics of a representation. In general, this

will require intricate understanding equivalent to that required for brain surgery. We

explore these issues more formally in Chapter 3.

1.3 Thesis Roadmap

We have divided this thesis into three parts. Part I introduces and motivates the

problem of elaboration tolerance in general. Some previous investigations of elabora-

tion tolerance are explored in Chapter 2. Chapter 3 introduces a formal framework

for talking about elaboration tolerance, and shows how certain design principles can

work to promote this property.

Part II focuses on additive elaboration tolerance. Chapter 4 defines additive elab-

oration tolerance in terms of two fundamental classes of elaborations: full retraction

and full addition. Full retraction is the ability to retract the truth of a formula, by

adding a formula. Full addition adds a formula without introducing inconsistency,

and can be retractable later. We extend the framework of Chapter 3 to this paradigm,

using the distinction between hard (absolutely true) and soft (probably true) facts.

Elaborations are defined as those operations which change the soft facts, and preserve

the hard ones.

The next chapters formally show how to endow arbitrary systems with additive

elaboration tolerance by embedding it in a more powerful system. Section 4.4 provides

a friendly introduction, sketching out the general principles involved without mucking

5We can describe our approach by the maxim “Knowledge base, know thyself.”

8 CHAPTER 1. FRAMEWORK AND MOTIVATION

with the technical details. That is the task of the remaining chapters of Part II:

Chapter 5 introduces the mathematical infrastructure we use to generally charac-

terize our representations. We call these structures extended axiomatic formal systems

with choice. Chapter 6 shows how one can combine two such representations S1 and

S2 to produce another system S1,2. We also provide a semantics for S1,2, based on

the cross-product of models. The motivation is that this way of combining seman-

tics is itself an elaboration tolerant means to add elaboration tolerant features to a

formalism. Chapter 7 introduces a special scaffolding SAb that is used to augment a

representation S1 to a new one S1,Ab = SAb ·S1 that has additive elaboration tolerance.

Chapter 8 formally proves this, by showing S1,Ab has full retraction and full addition

for any formula in the original language L1 of S1.

S1,Ab was originally only meant to be a simple witness that an arbitrary represen-

tation can be augmented to have additive elaboration tolerance. Chapter 9 explores

some serendipitous properties of the construction. The chapter also provides some

reassuring results, such as that S1,Ab is a sound construction, and that it initially

retains (before any elaborations) the same hard and soft formulas that were derivable

from S1. We also discuss some other desirable features, such as the fact that S1,Ab

is expressive enough to encode and respect the relevance of formulas. It turns out

that we can also “compactify” our representation after a sequence of elaborations

are applied. Let ψn ∪ . . . ∪ ψ1 ∪ S1,Ab denote the system after n elaborations. By

compaction we mean we can find a representation S ′
1,Ab with fewer axioms which is

equivalent, even under subsequent elaborations.

Finally, Part III examines the ramifications of elaboration tolerance including its

relevance to other fields, including belief revision. The famous AGM postulates can

be adapted to our own S1,Ab, resulting in some intuitive restrictions. Chapter 10

also relates elaboration tolerance to reformulation, Bayesian networks, and neural

networks.

Chapter 11 muses about the philosophical aspects of elaboration tolerance, and

argues that it is absolutely necessary for the further progress of the logical AI program.

We also recount some interesting relationships between elaboration tolerance and the

work done on the frame problem. In Section 11.4, we explore a weakness of our system

1.3. THESIS ROADMAP 9

S1,Ab: its elaborations are limited in their resolution in the sense that they cannot

be retracted or added on a case-by-case basis. [McCarthy, 2003] points out that his

system formalizing which birds fly in [McCarthy, 1986] does have this property. In

other words, a rule can be retracted for a particular instance, but still be made to

hold in place generally. We explore this example further, as well as the more general

concept of viewing nonmonotonic reasoning as an agent of elaboration tolerance. We

conclude with some interesting and practical research directions in Chapter 12.

We have put the bulk of the proofs in Appendix A to make this work easier to

absorb. To make the thesis more accessible, we have included an index as well.

Chapter 2

Previous Work on Elaboration

Tolerance

2.1 Introduction

Elaboration tolerance is first noted in John McCarthy’s 1988 paper [McCarthy, 1988],

and there are glimmers of the idea in the seminal 1959 paper, “Programs with

Common Sense” [McCarthy, 1959]. However, it is not until almost a decade later

in [McCarthy, 1997] that elaboration tolerance is explicitly studied on its own. This

paper further provides a typology of elaborations, and introduces the missionaries

and cannibals problem with its many elaborations as a Drosophila for the subject.

In that same year, Murray Shanahan in his book Solving the Frame Problem relates

the importance of elaboration tolerance to the frame problem. A year later, Eyal

Amir provides a syntactic framework within which to study and quantify elaboration

tolerance, described in [Amir, 1998].

We also find two approaches to designing elaboration tolerant representations

in the realm of logic programming. [Gelfond and Przymusinska, 1996] examine

elaboration tolerance in terms of changing the input/output specifications of pro-

grams, while [Alferes et al., 2000] demonstrate a method for updating a logic pro-

gram with another one. There are also two rather successful attempts at finding

10

2.2. THE ORIGINAL PAPER ON ELABORATION TOLERANCE 11

elaboration tolerant representations of McCarthy’s missionaries and cannibals prob-

lem: [Lifschitz, 2000] and [Gustafsson and Kvarnström, 2001].

2.2 The Original Paper on Elaboration Tolerance

[McCarthy, 1997] introduces elaboration tolerance and explains its necessity for

human-level AI: intelligent systems will need “to be able to take new phenomena

into account,” without having to rebuild their knowledge from scratch. McCarthy

also identifies different kinds of elaborations, citing addition of formulas as the sim-

plest kind, but also considering changing values of parameters, changing the arity of

relations and functions, and so on.

[McCarthy, 1997] makes two key observations. The first is that elaboration toler-

ance will require nonmonotonic reasoning (at least for additive elaboration tolerance).

The second is that a meta-level representation of the facts will be needed in order to

effect elaboration tolerance.

Another contribution of the work is the introduction of the missionaries and can-

nibals problem (MCP) as a Drosophila for the subject:

Three missionaries and three cannibals come to a river and find a boat

that holds two. If the cannibals ever outnumber the missionaries on either

bank, the missionaries will be eaten.

How shall they cross?

From this description, one can create a formalization in which to compute the

movements of the missionaries and cannibals so that they all cross safely.

[McCarthy, 1997] then submits nineteen1 different elaborations of the problem, such

as changing the number of missionaries and cannibals involved, or adding the fact

that a bridge fords the river. These elaborations serve to benchmark any prospective

formalization of the MCP: it should be easy to alter the representation (ultimately

by only adding sentences) to reflect the change and still solve the problem of crossing

the river.
1As of April 1, 2003, there are now twenty.

12 CHAPTER 2. PREVIOUS WORK ON ELABORATION TOLERANCE

McCarthy also provides a typology of elaborations. Some examples include adding

preconditions to actions, making properties depend on a situation, going into detail,

and splitting an entity.

2.3 Elaboration Tolerance and the Frame Problem

Murray Shanahan in his book Solving the Frame Problem [Shanahan, 1997] provides a

grand overview of many different representations of action and change, and how they

work to solve the frame problem. The frame problem is that of concisely representing

not only what facts change after an action occurs, but which ones remain the same.

Shanahan gives three criteria for a satisfactory solution to the frame problem:

1. representational parsimony

2. expressive flexibility

3. elaboration tolerance

Representational parsimony means that the representation of the effects of actions

should be compact, with size on order of the complexity of the domain. Expressive

flexibility refers to the ability to represent arbitrary phenomena in the framework,

such as concurrent actions or continuous change. Shanahan defines elaboration tol-

erance as when

the effort required to add new information to the representation is propor-

tional to the complexity of that information. In particular, to augment a

situation calculus theory with a new action that directly affects, say, n flu-

ents, might require the addition of roughly n new sentences, but it should

not necessitate the complete reconstruction of the old theory. Rather,

facts about the effects of the new action should be gracefully absorbed

into the old theory.

In an elaboration tolerant representation, the complexity of the changes only de-

pends on the information to be changed. Shanahan goes on to echo [McCarthy, 1997]’s

preference for an additive modality:

2.3. ELABORATION TOLERANCE AND THE FRAME PROBLEM 13

Ideally elaboration tolerance would mean that a new sentence could be

appended directly to the old theory to yield the new one. Appending a

single sentence to a theory is the simplest possible modification of that

theory.

This observation reflects our own fascination with additive elaboration toler-

ance. In fact, almost every approach to the frame problem has shared our at-

traction, focusing on solutions which only add formulas which prescribe the new

effect of an action to the set of axioms. This is evident in causal approaches such

as [Haugh, 1987] and [Lifschitz, 1987] and state-based ones such as [Baker, 1991].

This modality also shows up in the action languages [Gelfond and Lifschitz, 1993],

[Giunchiglia and Lifschitz, 1998], and [Kakas et al., 1999], as well as the event cal-

culus formalism of [Shanahan, 1997]. The only solutions which do not use addition

of formulas along with some requisite nonmonotonic reasoning are the explanation

closure axioms of [Haas, 1987] and [Schubert, 1990], and the successor state axioms of

[Reiter, 1991] and [McIlraith, 2000]. After an examination of the literature on reason-

ing about actions and change, it appears that of the three above criteria, elaboration

tolerance (particularly with an additive mode) has been the most important factor in

constructing solutions to the frame (and ramification and qualification) problem.

Shanahan also observes that elaboration tolerance requires nonmonotonicity. He

notes that most solutions to the frame problem infer the persistence of a fluent if

it is not affected by an action. But the solution should also tolerate the addition

of new effects of actions, and thus should inherently acknowledge that it does not

represent all known effects of all actions. Additive elaboration tolerance will require

any accompanying consequence relation to be nonmonotonic, as some facts may not

be true after the addition of a new axiom.

14 CHAPTER 2. PREVIOUS WORK ON ELABORATION TOLERANCE

2.4 A Syntactic Approach to Elaboration Toler-

ance

Eyal Amir in [Amir, 2000] investigates elaboration tolerance in terms of the syntactic

structure of theories. He uses axiomatic formal systems of the form 〈L, |∼, Γ〉 to

represent knowledge bases.2 Elaborations are restricted to sequences of the addition

and deletion of formulas in the language. Since knowledge bases may be expressed

in different languages, Amir uses a translation function t to translate two axiomatic

formal systems to a “common ground.” Arbitrary formalisms can then be compared

via their translated versions under t. One representation is (syntactically) more elab-

oration tolerant than another if it takes fewer actions to change it to some target

representation mapped to by t.

[Amir, 2000] also presents the notion of the abnormalization of a theory, where

each formula φ in a theory is replaced by the disjunction Abφ ∨ φ. Then logical

consequence under circumscription, where the Abs are minimized, is taken as the

consequence relation. It turns out that this paradigm requires fewer additions of

axioms than the original theory in order to reach a target representation.

Amir goes on to show that a propositional formalism is less elaboration toler-

ant than another which has more (by superset inclusion) symbols, when elaborations

are restricted to only adding formulas. Also, under this same restriction of elabora-

tions, a formalism is less elaboration tolerant than its abnormalized version. How-

ever [Amir, 2000] demonstrates that there are other kinds of nonmonotonic theories

that are less elaboration tolerant than their monotonic equivalents. Finally, given one

axiomatic formal system, one can always find another that is strictly more elaboration

tolerant (under Amir’s criterion) for a certain target representation.

2Axiomatic formal systems are comprised of a language L, set of axioms Γ which are in this
language, and a consequence relation |∼ which operates on sets of L-formulas.

2.5. APPROACHES BASED ON LOGIC PROGRAMMING 15

2.5 Approaches Based on Logic Programming

2.5.1 Specifications of Programs

[Gelfond and Przymusinska, 1996] describe software development as the process of

moving from a specification, to a representation, to the implementation. The re-

search focuses on the transition from specification to representation. Gelfond and

Przymusinska formally define a specification as a description which shows how to

map literals in one language Lsource to literals in another language Ltarget. The rep-

resentation of the specification is modeled by declarative logic programs using stable

model semantics. The representation is meant to realize the specification by applying

the logic program to literals from Lsource. The resulting inferences, restricted to the

language Ltarget, should match what was intended by the specification. An lp-function

refers to the combination of the logic program and Lsource-literals.

Gelfond and Przymusinska assert that a representation of a specification is elab-

oration tolerant if a small change to the specification requires a small change to the

accompanying representation. They believe that in practice, specifications will be

built up functionally from simpler ones, and that their representations will be homo-

morphic. This means that if we create a new specification specnew = f(spec1, spec2),

and Π1 is the representation for spec1, and Π2 that for spec2, then the representation

for specnew will be some function g of Π1 and Π2. The elaboration tolerance of spec1

and spec2 with respect to f is measured in terms of the complexity of this g.

The paper introduces two homomorphic kinds of combinations: incremental ex-

tensions and simple input extensions. Incremental extensions are simply the union

of two specifications, where neither of the source and target languages interact ad-

versely. In this case, the representation of incremental extensions is just the union of

the logic programs. Simple input extensions are specifications which are extended to

accept as its input formulas both in Lsource as well and Ltarget. The representation

for this kind of extension is created by separating the logic program into two parts,

altering one of them, and then recombining them.

16 CHAPTER 2. PREVIOUS WORK ON ELABORATION TOLERANCE

2.5.2 Dynamic Logic Programming

[Alferes et al., 2000] introduce the paradigm of dynamic logic programming, which

shows how to update a logic program P by another program U , resulting in the

program P ⊕ U . This paradigm is used to deal with knowledge that evolves with

time. Their treatment not only allows one to change facts (the extensional part of

the logic program), but the rules (the intensional part).

Alferes et al. use propositional Horn theories as their representational substrate,

where there is at most one atom or negated atom in the head of each rule. This

means that every rule in a logic program P is either of the form:

not a :- c1, . . . , cm, not d1, . . . , not dn

or

a :- c1, . . . , cm, not d1, . . . , not dn,

(2.1)

where each a, ci, and dj is a member of a set of proposition letters P . Stable

model semantics are used to give meaning to these programs, where not is the default

negation operator.

Given two propositional Horn logic programs P (original program) and U (up-

date), the update P ⊕U consists of the following sentences in the expanded language

L+ = P ∪ {a−, aP, a
−
P , aU, a

−
U | a ∈ P}:

1. (RP) Rewritten original program clauses:

(a) For each a :- c1, . . . , cm, not d1, . . . not dn ∈ P , we have

aP :- c1, . . . , cm, d
−
1 , . . . d

−
n ∈ P ⊕ U .

(b) For each not a :- c1, . . . , cm, not d1, . . . not dn ∈ P , we have

a−P :- c1, . . . , cm, d
−
1 , . . . d

−
n ∈ P ⊕ U .

2. (RU) Rewritten updating program clauses:

(a) For each a :- c1, . . . , cm, not d1, . . . not dn ∈ U , we have

aU :- c1, . . . , cm, d
−
1 , . . . d

−
n ∈ P ⊕ U .

2.5. APPROACHES BASED ON LOGIC PROGRAMMING 17

(b) And for each not a :- c1, . . . , cm, not d1, . . . not dn ∈ U , we have

a−U :- c1, . . . , cm, d
−
1 , . . . d

−
n ∈ P ⊕ U .

3. (UR) Update rules:

For each a ∈ P,

(a) a :- aU ∈ P ⊕ U .

(b) a− :- a−U ∈ P ⊕ U .

4. (IR) Inheritance rules:

For each a ∈ P,

(a) a :- aP, not a−U ∈ P ⊕ U .

(b) a− :- a−P , not aU ∈ P ⊕ U .

5. (DR) Default rules:

For each a ∈ P,

(a) a−:- not aP, not aU

(b) not a:- a−

The sets of rules (RP) and (RU) rewrite the heads of all rules in terms of aP, a
−
P ,

aU and a−U . This allows us to distinguish from which program, P or U , each conclusion

hails. With this distinction in place, one can prioritize the conclusions by means of

rules in (UR) and (IR) – if a conclusion follows from U , then accept it immediately;

if P espouses some conclusion accept it only if U does not contradict it. Finally, the

rules (DR) translate the negative atoms a−P and a−U back to their negated counterparts

– in any particular model, a− holds as long as neither aP nor aU are inferred, which

means that not a will have to hold as well.

Alferes et al. note that the construction of P⊕U from P and U takes at most linear

time in the size of the programs. Theorem 4.1 shows how any stable model of P ⊕U

can be constructed very straightforwardly from rules of P ∪ U . [Alferes et al., 2000]

18 CHAPTER 2. PREVIOUS WORK ON ELABORATION TOLERANCE

go on to generalize their notion of program update to a sequence or even tree of

programs, each of which updates their predecessor.

The idea of rewriting atoms in a given theory and applying some kind of non-

monotonic reasoning to update it is not new. [Winslett, 1989] performs a similar

transformation on a logical theory. The theory consists of protected and unprotected

formulas; the protected formulas are those which are never to be retracted and must

hold true in the updated theory. The theory T in question is transformed to another

theory, where each occurrence of the predicate symbol P is replaced with the sym-

bol oldP , and a copy of only the protected formulas is added with P replaced by

newP . To update the theory with α, the formula α′ is added, which is α with every

P replaced with newP . Then, the theory is circumscribed, minimizing the change

between newP and oldP . 3

As an aside, the approach of [Alferes et al., 2000] is semantically different from

that of [Winslett, 1989], in how they update their formalisms. Winslett’s approach

follows the interpretation update model, proposed in [Katsuno and Mendelzon, 1992].

In this paradigm, we first take the models of the original database DB, update each

of them individually, and then define DB′ as the database which corresponds to

the set of updated models. [Alferes et al., 2000] notes that interpretation update is

computationally impractical, and can lead to unintuitive results, particularly when an

update is meant to alter the behavior of the intensional part of the original database.

This method also does not respect the syntax of a program, which could encode

important information (particularly causal links). [Alferes et al., 2000]’s approach is

actually closer to that of revision, where the new database DB′ corresponds to those

models of the update which are closest to the original database DB. This approach

is the same as interpretation update when P is purely extensional. We discuss this

topic of update versus revision in more detail in Section 10.1.1, and how it relates to

elaboration tolerance.

3It is slightly more complicated than this. Winslett also gives each predicate symbol P a priority,
and prioritized circumscription is performed over the theory, respecting these priorities.

2.6. ELABORATION TOLERANT SOLUTIONS TO THE MCP 19

2.6 Elaboration Tolerant Solutions to the MCP

2.6.1 The Causal Calculator

CCALC [McCain and Turner, 1997] is a program used for reasoning about actions and

change. It uses the principle of causality to determine the relations between fluents

and actions, which respectively hold/occur at integral timepoints. It has effect axioms

of the form:

a causes f if φ, (2.2)

which means that if action a occurs at time t and formula φ holds at t, fluent f

will told at t+ 1. Ramifications are handled by the directive:

causedby f if φ, (2.3)

which states that f holds at t if φ holds at t. Finally, “anti”-preconditions are

modeled by the statement:

nonexecutable a if φ, (2.4)

asserting that if φ holds at t then a cannot occur at t. Unlike most action for-

malisms, CCALC assumes an action is executable as long as one cannot prove it

otherwise. These three statements comprise what are known as action descriptions.

Note that a, f and φ can be parameterized by free variables.

CCALC is really only a high-level description language. CCALC files are compiled

by a Prolog program to a grounded version, which implements the nonmonotonic

causal mechanisms of the language. CCALC also includes other helpful constructions:

First of all, the action descriptions are listed in files, and CCALC allows for di-

rectives which can load in statements from another file into the current one. This

mechanism thus treats each file as a context, with the file loading directive corre-

sponding to a lifting axiom.

Sorts are the second important feature: each term, including variables, must be

20 CHAPTER 2. PREVIOUS WORK ON ELABORATION TOLERANCE

declared ahead of time, and assigned a particular sort (or type). Then during compi-

lation, variable instantiation is restricted only to constants of that sort, giving rise to

a version of the closed world assumption. Every new declared object automatically

inherits the relevant properties of the sort. Some pre-determined sorts have special

[nonmonotonic] semantics and are used to solve the frame problem. For example,

fluents of type inertialTrueFluent are meant to remain true after an action, if no

other information is available.

Third, labels are added to identify defeasible statements; these can be used to

nullify statements later on. CCALC statements of the form (2.5):

(label1) Φ, (2.5)

are compiled to rules of the form (2.6):

¬Ab(label1) =⇒ Φ. (2.6)

The semantics of the Prolog implementation assumes ¬Ab(`) for any label ` by

default, so unless Ab(label1) is asserted, Φ will hold in the program.

These three features of CCALC promote elaboration tolerance. Having file loading

directives allows one to cleanly organize action descriptions. The sorts nicely restrict

grounding only to pertinent terms. The labels allow one to have defeasible action

descriptions.

[Lifschitz, 2000] uses CCALC to represent McCarthy’s elaborations of the mis-

sionaries and cannibals problem. In addition to the elaboration tolerant features of

CCALC, Lifschitz also uses syntax and choice of language to his advantage. For ex-

ample, one important kind of elaboration is adding an attribute to a term, such as

the speed at which the action cross(bank1, bank2) is achieved. Instead of surgically

inserting another argument to say something like cross(bank1, bank2, quickly), one

adds the fact as an attribute, or fluent:4

4The syntax used in [Lifschitz, 2000] is slightly different, but this is the general idea. This concept
is also known as operator splitting.

2.6. ELABORATION TOLERANT SOLUTIONS TO THE MCP 21

cross(bank1, bank2) causes speed(cross(bank1, bank2), quickly) if >.

This action attribute uses an analytic rather than synthetic syntax

[McCarthy, 1962] to elaborate an action. One can see that the analytic syntax is

much more elaboration tolerant, as it only requires an expansion of the language to

express another attribute of an object, as opposed to the rewriting of a symbol.

A second important aspect of Lifschitz’s formalization is the use of groups, or sets,

of objects. Lifschitz uses the fluent num(set, location, number) to assert that number

of the elements in set are at location. This construct allows easy representation of

any new constructs, such as the set of missionaries who can row, the largest cannibal,

etc.

In order to address ten out of the original nineteen elaborations of the missionaries

and cannibals problem, Lifschitz first creates a file describing the basic missionaries

and cannibals problem. Each elaboration consists of a new file which loads in the basic

problem, adds the extra constraints associated with the elaborations (mainly with the

use of nonexecutable), and retracts (using the labels) any statements inconsistent

with the new elaboration. Action attributes are used to elaborate the actions, and

constraints added over their use. Concurrency is a part of CCALC so adding non-

interacting concurrent actions is straightforward.5

2.6.2 Object-Oriented Temporal Action Language

[Gustafsson and Kvarnström, 2001] introduce an intriguing object oriented frame-

work in which to solve the missionaries and cannibals problem. It operates using a

variant of a TAL (Temporal Action Logic) [Doherty et al., 1998], which itself is based

on two components: L(ND), a high level description language, which compiles down

5The problem of “difficult concurrency,” where two concurrent actions effect the same fluent
cumulatively, has been addressed by additive fluents [Lee and Lifschitz, 2001]. Additive fluents can
correctly represent the number of people moved across when there are multiple, concurrent moves,
which cumulatively affect the same fluent. Examples include the missionaries and cannibals problem
when there is a bridge, or when Jesus walks on water alongside the boat.

22 CHAPTER 2. PREVIOUS WORK ON ELABORATION TOLERANCE

to L(FL), a low level language for implementing the actual inferences.

The framework consists of classes, objects, and attributes. Classes inherit proper-

ties from other classes, and have certain attributes (fluents). Objects are instantia-

tions of classes. Methods are executions of code in the usual object-oriented paradigm,

but here they correspond to TAL formulas that must be true at invocation time.

Methods can be used to set values of fluents, constrain them to certain values, and

access their values.

There are three ways [Gustafsson and Kvarnström, 2001] use these mechanisms

to elaborate a particular domain. First, more detailed subclasses can be introduced

which inherit properties from parent classes. Second, attributes and methods can be

added to a class. Thirdly, these methods can be further overridden, with the help

of a special fluent override that is used like Ab to inject defeasibility into theories:

each method of the form a.b = c is compiled to a statement of the form

¬override(a, b, c) =⇒ a.b = c,

where override is a special predicate that by default is assumed to be false.

To their credit, Gustafsson and Kvarnström model the original missionaries and

cannibals problem first, without peeking at the nineteen elaborations. Their object-

oriented paradigm formalizes fourteen of the nineteen elaborations, and can handle

concurrent actions which affect the same fluent. Their primary means of elaboration

is through the creation of overriding subclasses, and then adding objects to these more

specific subclasses. The other way is by adding attributes, and additional constraints

on them through methods.

2.6.3 Evaluation of the Two Approaches

[Lifschitz, 2000] and [Gustafsson and Kvarnström, 2001] share some common fea-

tures that enable elaboration tolerance:

1. Defeasibility: Adding facts is easy; one needs to be able to retract them as well.

Both use the same mechanism to accomplish this. Lifschitz uses abnormalities,

2.6. ELABORATION TOLERANT SOLUTIONS TO THE MCP 23

while Gustafsson and Kvarnström use the fluent override, along with some

built-in nonmonotonicity.

2. Contexts: some context-like mechanisms are used to consolidate and organize

axioms. While Lifschitz uses different files, Gustafsson and Kvarnström use

classes/subclasses. Both employ an inheritance-like mechanism to combine

facts. Contexts are powerful because they provide a handle to refer to a collec-

tion of formulas.

3. Sorts: In both formalisms they not only act to enforce the closed-world assump-

tion, but organize information to some extent. They can be used to restrict

variable substitutions within the language.

4. Attributes: Features are easily added to terms by simply attributing them, using

extra fluents. The object oriented model admits easy addition of attributes to

classes, so that all objects inherit the attributes.

5. High level versus low level implementation: A key feature of both formalisms

is that they employ a high level language to describe what is desired without

cluttering up the formalism with the nitty-gritty details of implementation.

That is the task of the low-level language, which actually computes the solution.

Chapter 3 will introduce a formal framework within which we can explain how

the above constructs promote elaboration tolerance.

Chapter 3

General Principles of Elaboration

Tolerance

In this chapter, we provide a natural framework for representations and their elab-

orations, and use it to find general principles of elaboration tolerance. Described in

Section 3.1, this framework is based on the distinction between the hard and soft con-

sequences of a particular representation R. Elaborations are defined as only changing

the soft conclusions of a representation. Section 3.2 then asserts two requirements

for elaboration tolerance: easy alteration and easy prediction. It is not enough that

our elaborations be simple to implement; the consequences of the change should be

somewhat obvious. We focus on how these two principles affect the formal properties

of our framework in Section 3.3. This study leads to various design principles that

can promote elaboration tolerance, described in Section 3.4.

3.1 Initial Framework

Consider [McCarthy, 1997]’s missionaries and cannibals problem:

24

3.1. INITIAL FRAMEWORK 25

Three missionaries and three cannibals come to a river and find a boat

that holds two. If the cannibals ever outnumber the missionaries on

either bank, the missionaries will be eaten.

How shall they cross?

(3.1)

This description (3.1) has some associated representation R. Furthermore, R can

be used to solve the puzzle, showing how the actors can cross the river in eleven

moves, without anyone being eaten. But then, one can further elaborate the puzzle

by appending ψ3→4(R):

Assume instead that there are four missionaries and four cannibals. (3.2)

Let us call this updated description ψ3→4(R) ·R. Any person will know that this

new problem has the same meaning as:

Four missionaries and four cannibals come to a river and find a boat

that holds two. If the cannibals ever outnumber the missionaries on

either bank, the missionaries will be eaten.

How shall they cross?

(3.3)

With the addition of one simple statement, the entire formulation has changed

to include a different number of actors. Furthermore, humans can readily use this

updated representation ψ3→4(R) · R to solve the altered missionaries and cannibals

problem with four actors.

The point of this example is that we have changed the intended meaning of our

representation, in this case, by simply adding a statement. This elaboration is suc-

cinct, and the result contains enough information to solve the altered problem. This

26 CHAPTER 3. GENERAL PRINCIPLES OF ELABORATION TOLERANCE

ease of change is in fact part of the appeal of natural language. Our question is, how

do we design our formal representations so that they also admit this easy elaboration

tolerance? Answering this question is the main thrust of this thesis.

We first observe that we do not know how R is formally represented. Whatever R

is, it does embody the notion in (3.1), and conversely the words in (3.1) are enough

to specify R. But, it is not likely that R consists exactly of these English statements.

[McCarthy, 1997] gives the reason why: a person, if asked to repeat the problem,

is unlikely to give the same sequence of words as in (3.1). R has some internal

representation in our brains that we cannot directly access. For now, we will remain

agnostic about what R looks like.

But while we may not know the exact structure of R, we can infer all sorts of

facts from it. After hearing (3.1), we know that there is a river that needs to be

crossed, without anyone being eaten. Also, there is probably not a bridge. This

second inference is a Gricean implicature [Grice, 1989]. This is an inference based on

a rule of conversation where if a fact that is relevant is not mentioned, it must not

hold. Formally, we can represent these inferences using the following notation:

R ` “There is a river that must be crossed without anyone being eaten.”

R ` “There is probably not a bridge.”
(3.4)

We can use our handy consequence relation ` as a way to represent our indirect

inspection of R. But first let us examine the nature of the deductions in (3.4) a bit

closer. There is a subtle difference between the nature of the first sentence derived

from R in (3.4) and the second one. The first sentence is a fact which is indisputable.

On the other hand, the fact that there is probably not a bridge is only likely to hold, in

that it does not logically follow from R. It is more an assumption than an inference.

In this case it is meta-linguistic, derived from background knowledge and the rules of

communication. This second kind of inference, although weaker, is just as crucial to

solving the problem as our indisputable facts.

We find it important here (and for the rest of this thesis) to formally distinguish

between these two kinds of deductions. Instead of (3.4), we will write:

3.1. INITIAL FRAMEWORK 27

R ` “There is a river that must be crossed without anyone being eaten.”

R |∼ “There is not a bridge.”
(3.5)

Intuitively, ` is a stricter consequence relation than |∼. ` only produces conclu-

sions that logically follow from R, while |∼ infers facts that are only usually true.

The distinction is nicely described in [Kraus et al., 1990] in terms of hard and soft

truths. The facts derivable from R using ` are the hard truths, while those using |∼

are soft ones. Hard truths are more stable, in that they will remain true, no matter

what new information we are given. This means that ` is a monotonic consequence

relation. An example of a hard truth is “1+1=2” – no matter what new information

we learn, this fact will always hold.

Soft truths on the other hand are defeasible. These are facts that usually hold,

but are based on defaults such as conversational rules of thumb or background infor-

mation. These are often made false in the presence of additional information, such as

“Tweety flies.” We will use |∼ to represent this kind of common sense inference, that

is, the mechanism people (and smart robots) use to informally infer facts about the

world day-to-day. In the case of our smart robots, |∼ may not be as loosely specified.

It could be something as concrete as a closed-world assumption on a database, or a

communication convention in a protocol [Genesereth, 2003]. The point is that the

nature of |∼ depends on some sort of defeasible reasoning that is not entirely sound.

However, since it gives us more information than ` (in general we assume |∼ ⊆ `),

we use it as our primary means of inference.

There is also a useful semantic means of distinguishing between hard and soft

facts. If we envision the truth of a fact φ as when it holds in some set of possible

worlds, hard truths are those which hold in all worlds described by R that we can

imagine, that is all states of the universe. But most of the time we do not (or cannot)

consider all possible worlds, and only consider truth in the preferred or most likely

subset of all possible worlds espoused by R. We will construct the formal framework

that allows this semantic interpretation later in Section 5.2. For now we will assume it

as given. Viewing soft truth in terms of preferred worlds is not unreasonable, as there

28 CHAPTER 3. GENERAL PRINCIPLES OF ELABORATION TOLERANCE

are all sorts of principles which restrict our view of the world in ways that are not al-

ways valid. Figure 3.1 demonstrates this graphically. Formalisms such as conditional

logic [Chellas, 1980] and counterfactuals [Lewis, 1973] [Costello and McCarthy, 1999],

where truth is determined in terms of the most likely or closest worlds to the current

one, are built on these same ideas.

All worlds described by R

Preferred worlds
of R

Figure 3.1: The preferred worlds of R are a subset of all of worlds described by R.

What is the importance of this distinction between hard and soft facts? We

want to use this hard/soft distinction to characterize our elaborations – specifically,

elaborations can only change soft facts, and must leave the hard ones as is. Intuitively,

our representation R only gives us an incomplete vision of what we are trying to

describe; the set of facts derived by ` is sparse because they must be true in all

versions of R. |∼ “fills in the gaps” by providing extra facts, relying on rules of

conversation and other defeasible modes of inference. We envision our elaboration e

as constructing a revision of R where the gaps are filled in differently. Formally, we

can write this as:

R ` φ =⇒ e ·R ` φ, (3.6)

while it is not necessarily the case that

R |∼ φ =⇒ e ·R |∼ φ. (3.7)

That is, while the elaboration operation e· preserves hard facts, it can alter soft

ones.

3.1. INITIAL FRAMEWORK 29

We can extend our semantic intuition depicted in Figure 3.1 to this view of how

elaborations work. Since elaborations only change the soft facts, we can view them

as changing the set of preferred worlds, within the set of all worlds, as shown in

Figure 3.2:

All models of R

Preferred
models of R

Apply elaboration e

Preferred
models of e ·R

All models of e ·R

Figure 3.2: Elaborations change the focus of preferred models.

Since the hard facts espoused by R are immutable, our elaboration e must preserve

their truth. Figure 3.2 verifies this by showing that the set of all worlds does not

change after application of e (only the preferred ones do). If the set of all worlds does

not change with an elaboration, all hard facts will also remain the same.

As ` must examine each model of R to determine truth, we can use its negation

to determine what facts can possibly be true, and thus elaborated. |∼ plays the dual

role of asserting that what facts are likely. 1 Hence, as mentioned before, we will use

|∼ as our primary means of generating consequences, using ` only to find out what

facts are possible.

Distinguishing between degrees of truth is a crucial part of many other different

fields of artificial intelligence. [Ginsberg and Smith, 1987] uses a concept of protected

laws, which are domain constraints that can never be violated when reasoning about

the effects on an action. An example of a protected law is that an object is in ex-

actly one place at one time. These laws play a similar role in determining what

1It is important to note that for a representation R in human language, every conceivable state
of the universe is a possible world of R, as almost anything is possible. Thus, almost all facts are
soft and thus subject to being elaborated.

30 CHAPTER 3. GENERAL PRINCIPLES OF ELABORATION TOLERANCE

facts hold and which change after an action is applied. Certainly the field of prob-

abilistic reasoning [Pearl, 1988] is entirely concerned with quantifying the level of

uncertainty of a statement. Bayes rule quantifies how the probability of a statement

changes as one learns a new fact. The concept of epistemic entrenchment in belief

revision [Gärdenfors, 1992] is used to quantify how strongly a statement is believed,

which is important when revising one’s beliefs. For example, say a belief φ is more

epistemically entrenched than some other belief ψ, written φ > ψ. If we ever have to

choose between these two beliefs (say in a revision), we should keep φ and not believe

ψ, as we believe it less strongly.

[Fikes, 2003c] points out that the hard/soft distinction between facts can be

used to sharpen the notion of an ontology. An ontology is the formalization of a

domain using special structures. For example, a time domain may include Allen

interval relations [Allen, 1981] and calendars as fundamental entities. Often one uses

special-purpose reasoners to take advantage of this built-in structure, and reason

more effectively [Fikes et al., 2003]. Fikes suggests that this structure corresponds to

a domain theory, which must be true in all possible worlds. This domain theory in

turn can be thought of as the set of hard facts.

Later on, it might be useful to represent different kinds of facts with different

consequence relations, such as |∼α, |∼β, For now, we stick to our simple paradigm

of ` and |∼.

3.2 First Principles of Elaboration Tolerance

A representation R is elaboration tolerant to the extent it is easy to change to some

other representation R′. This definition entails two necessary properties: that R be

“easy to change,” but also “easy to predict:”

1. “easy to change” – the elaborations must be of low complexity.

By low complexity, we mean simple computations, such as only adding or delet-

ing formulas. Or, the elaboration could be some simple syntactic manipulation

of the formulas in the language. A more complicated elaboration would change

3.3. UNDERSTANDING ELABORATION TOLERANCE 31

the language of the representation. 2

[Shanahan, 1997] provides a metric for elaboration tolerance, asserting that a

representation is elaboration tolerant if the effort required to apply an elabora-

tion is proportional to the complexity of information being added. More glibly,

the elaboration should not require a rewrite of the entire representation.

2. “easy to predict.” We must be confident that the changes we apply to our

elaboration will result in the desired representation. To be precise, we use

elaborations to change the meaning of a representation to some other meaning.

However in practice, we will have to implement our elaborations as syntactic

machinations on our representations. This can become difficult when the map-

ping between the elements of the language and actual meaning (semantics) of

the representation is either unclear or too complicated, as it will be harder to

ensure that the change we make to our symbolic representation has the desired

effects.

We can perceive the meaning as being partly determined by the relationship

between the elements of the representation, and our consequence relation |∼. 3

To give some intuition, we can view the operation of |∼ on R as the way elements

of R interact to form new elements, a concept we discuss in more detail in

Section 3.3.

3.3 Understanding Elaboration Tolerance

We can evaluate elaborations in terms of the following framework. Say our repre-

sentation R is composed of some set of objects {σ1, . . . , σn}, each of which denotes

some meaning. The inference relation |∼ can be construed as combining these ba-

sic meanings to infer other meanings: we can view the set of consequences of R,

2We could use Kolmogorov complexity [Kolmogorov, 1965] to formally characterize how compli-
cated our elaborations are, but we doubt this metric will give us any insights into our study of
elaboration tolerance. On the other hand, if there was an analog of Kolmogorov complexity express-
ible within the language of representation, along with some set-theoretic operations, we might have
a more illuminating measure.

3|∼ could be monotonic or nonmonotonic; we make no assumptions about it yet.

32 CHAPTER 3. GENERAL PRINCIPLES OF ELABORATION TOLERANCE

{φ | σ1, . . . , σn |∼ φ} as the result of all sorts of “reactions” between each σi. (It is

helpful to think of these reactions as logical steps such as modus ponens, but they

could involve more than two operands.) The more consequences |∼ can derive, the

more powerful it is, but this also means that it involves that many more reactions

between the basic units {σi}, as well as their descendants. In this section, we demon-

strate how the complexity of these reactions will in turn make it more difficult to

predict how a change to {σ1, . . . , σn} will affect its consequences.

As mentioned before, these reactions are non-existent if |∼ were simply defined to

be set inclusion. If R |∼ σ ⇐⇒ σ ∈ R, then no new “products” are formed – the

only conclusions we can make are those already part of R. On the other hand, we

could have very complicated reactions if |∼ obeyed a rule like Cut:

Cut
R |∼ φ, R, φ |∼ ψ

R |∼ ψ
, (3.8)

because now we have to deal with the reactions between the descendants of

σ1, . . . , σn in our calculations. For example, if φ is some new conclusion generated

from R, we have to consider as conclusions all by-products ψ that could be generated

from the expanded representation R plus φ.

Now consider what would happen to our representation if we applied the simplest

elaboration, altering just one of the basic units of meaning:

e ·R = {σ1, . . . , e(σi), . . . , σn}. (3.9)

If |∼ is powerful, it will be hard to predict how this change will effect the conse-

quences of the elaborated representation e · R, given all of the subsequent reactions

between our units of meaning. We would like the consequences of e · R to be a sim-

ple function of those of R, and e separately. However whether we can decompose the

meaning of our elaborations in this manner depends strongly on e, as shown in (3.10).

e ·R = {φ | {σ1, . . . , e(σi), . . . , σn} |∼ φ}

=? h(e, {φ | {σ1, . . . , σi, . . . , σn} |∼ φ})
(3.10)

Adding elaborations, defined as when e(·) = · ∪ σe, is just as complicated, but

3.3. UNDERSTANDING ELABORATION TOLERANCE 33

the study of inference relations has been primed for this kind of modality on repre-

sentations, and less so for others. Also, semantically, addition is easy to understand,

particularly if |∼ is monotonic. Deletion, by contrast, is difficult to predict as it is

very sensitive to the syntactic nature of the original representation. For example, in

the theory

α, (α =⇒ β), β, (3.11)

deleting β will not in fact remove β from our knowledge base, because it can be

re-derived from the other two conjuncts (a reaction!). In order to have our elabora-

tions work properly, we have to understand how they inter-operate with our inference

relation and the units of meaning, which could be arbitrarily complicated. Other elab-

orations which actually involve syntactic changes to σi will depend on the reactions

between the σs, requiring particularly intricate reasoning.

Our construction indicates that the power of |∼ is the barrier to having more

expressive elaborations. If our inference relation minimized reactions between our

units of meaning σi (e.g., if they were inert!), or more generally, if the reactions were

globally well-understood, then we could better understand how our elaborations, no

matter how complicated, actually effect our representation. This in turn would make

it easy to find elaborations which accomplish exactly the change we desire.

Many formalisms that are structured so that their underlying units are inferen-

tially inert come to mind. Relational databases consist of sets of tuples which do not

react in any way at all. In this case, the inference relation R |∼rel db (∃y)φ(x, y) is

simply reduced to checking if φ(x, z) ∈ R, for some z, spiced up with some boolean

combinations. Frame systems, those structures built up from frames, slots, slot val-

ues, type and cardinality constraints, etc., are relatively inert, as the only interactions

in that paradigm are inheritance between classes, and constraint checking. In this

case R |∼frames φ if φ holds for the current class, or any superclass, given that it

satisfies the constraints.

In the STRIPS [Fikes and Nilsson, 1971] formalism, states of the world are rep-

resented by sets of arbitrary first-order sentences. The system employs a first-order

34 CHAPTER 3. GENERAL PRINCIPLES OF ELABORATION TOLERANCE

theorem prover to infer what is true in a given state. However it uses a much sim-

pler framework to compute the result of performing an action, using only the set

and instantiation operations on the Precondition, Add, and Delete lists. In con-

trast to full first-order inference methods for computing successor states, as was done

in [Green, 1969], these set operations limit the interactions between sentences, effi-

ciently enabling an elegant class of inferences.

In some sense, this weak interaction between units of meaning can be construed as

being “Cartesian.” By Cartesian, we mean that each unit of meaning σi is indepen-

dent of the other meanings σ1, . . . , σn in terms of inferential capability. These ideas

are very similar to [McCarthy, 1997]’s intuition about Cartesian theories, in the sense

that each element σ of R expresses exactly one concept, and is independent of the

other concepts. This Cartesian independence will make a surgical (where we actually

do manipulate the formulas) approach to elaboration tolerance more feasible – if one

fact is changed, we can guarantee that there will be no [unintended] propagated ef-

fects. Also, we can iteratively change the theory one meaning σ at a time, converging

on the intended representation R′. If a theory was not Cartesian in this sense, we

would have to perform surgery on many different statements, all while respecting the

entangled relationships between them. The intuition behind finding a proper basis in

linear algebra fits well here. 4

Another way to promote this independence is through inference rules. If our units

of meaning σ1, . . . , σn are truly independent, then adding some new unit of meaning

σn+1 will not change the meanings already derived. If this were true for any set of

σi, then |∼ would be monotonic. Monotonic consequence relations guarantee that

none of our meanings ever change or are removed as we add statements (unless we

explicitly delete them). This domain is more benign than nonmonotonic inference,

where a consequence could be nullified upon adding a new fact.

Yet a third way to restrict these reactions between units is to use contexts to

4This Cartesian notion is the motivation for state vectors, intro-
duced in [McCarthy and Painter, 1967] and used to represent counterfactuals
in [Costello and McCarthy, 1999]. State vectors encode independence of elements, so that if
we treat an elaboration as an operation which changes one dimension of a state vector, then the
operators are truly local, and therefore predictable.

3.3. UNDERSTANDING ELABORATION TOLERANCE 35

partition our elements σi. Contexts [Guha, 1991] [McCarthy, 1993]

[McCarthy and Buvač, 1994] can be used to group relevant elements, and localize in-

ference, to prevent [consideration of] interactions between irrelevant elements. This

also provides a mechanism to visualize inference, as the contexts provide conceptual

pathways along which inference is allowed to flow. Contexts have been used as an

effective mechanism in Cyc [Cyc, 2003, Lenat and Guha, 1990], both to organize ax-

ioms, and provide bounds on inference. Hierarchies have been similarly utilized to

successfully segment interactions between elements of R, as done in frame systems

and object-oriented programming. [Amir, 2001], inspired by object-oriented pro-

gramming methods, shows how to partition theories in order to encapsulate them,

and prevent irrelevant inferences between them.

A fourth solution is to use a very simple language, usually lacking boolean con-

nectives and quantifiers, to represent R. In practice, this is usually some syntac-

tically restricted fragment of first-order logic. For example, relational databases

are really just collections of positive atoms. Since they are usually interpreted in

terms of the closed world assumption (atoms not in the database are assumed to

be false), each representation corresponds exactly to one model, in an obvious fash-

ion. The popularity of action description languages [Gelfond and Lifschitz, 1993],

[Giunchiglia and Lifschitz, 1998], [Kakas et al., 1999] used to solve the frame prob-

lems in the early 1990s can also attest to the attractiveness of this approach. 5

It may be possible to also induce inertness by reformulating our representations to

maximize irrelevance between our units of meaning. We have to be careful however

5It is interesting to note that these restricted approaches closely emulate relational database
theory in two major ways:

1. The formulas of the language consist solely of positive atoms (no boolean operators), just
as in relational databases. Some approaches allow some limited quantification over a known
set, but since the equivalent grounded set is finite it does not add expressive power. The
implementation of this limited quantification itself does add some expressive power, in the
sense that it is implementing a kind of closed world assumption.

2. There is a need for both a query language (for discovering the consequences of the data)
and a description language (for representing the data) [Lifschitz, 1996]. The query language
corresponds to something like a relational algebra, while the description language is like a
database schema.

36 CHAPTER 3. GENERAL PRINCIPLES OF ELABORATION TOLERANCE

that our reformulations preserve the meaning of what we want to say, along with any

relevancies we want to retain.

Ultimately, however, we believe that the key to ensuring our syntactic manipula-

tions have the intended semantic effects is to ensure some sort of 1-1 correspondence

between symbols and meaning. This way, when we manipulate the symbols, we di-

rectly manipulate the meaning. Then all we must ensure is that we have used our

symbols to properly convey the desired meaning of R. We explore some design prin-

ciples that advance this 1-1 correspondence next, in Section 3.4.

3.4 Design Principles of Elaboration Tolerance

There are a number of design principles that can reinforce this 1-1 correspondence

for any representation, without changing the semantics or adding any new features.

The bulk of these principles have been derived from relational database design, but

also hail from compiler theory and programming methodology.

The tenets of relational database design are particularly relevant to elaboration

tolerance. The express purpose of databases is to provide a system that can rapidly

access, manage, and update information over time. By definition, these structures

embody the essence of what is required for elaboration tolerance! Compiler theory also

contributes to our theory of elaboration tolerance by distinguishing how expressions

are constructed. Programming methodology underscores some of the same principles

espoused by relational database design.

For this section, assume our language is sorted, with sorts S1, . . . , Sn. Note that

the sorts can be repeated in the definition of a relation. Attributes are various re-

namings of the sorts used for a certain purpose. So for example we can have the sort

Snine digit numbers, but then have the attributes ASSN (SSN = Social Security Number)

and Aaccount number which both contain the elements of Snine digit numbers, but play very

different roles semantically. We specify relations by the cross-product of the attributes

(as opposed to sorts) of which it is a subset.

In the next few sections we explore various principles and techniques that can

advance our 1-1 correspondences between meanings and symbols, on various levels of

3.4. DESIGN PRINCIPLES OF ELABORATION TOLERANCE 37

the language, from terms, to literals, to sentences.

3.4.1 How to Construct Relations

Dependencies and Keys

In order to ensure a representation reflects the proper semantics, we first have to

be able to describe the semantics. Relational database design uses dependencies to

represent these semantics, which are then used to construct proper relations. If α and

β are sets of attributes, the dependency α→ β means that knowing the values of α will

determine the values of β within any relation. Hence for example, ASSN → AName.

A key for a relation is some set of attributes, which when known, determines the

rest of the attributes in the relation. Consider the relation

R ⊆ ASSN × AName × AEyeColor. ASSN is a key with respect to this set, because

once a social security number is known for a person, the name and eye color of the

person can be discovered. On the other hand AEyeColor is not a key for the other

two attributes, as there are many people with the same eye color. Even the set

{AName, AEyeColor} is not a key for ASSN , because there could be multiple people

with the same name and eye color. On the other hand, ASSN is not a key for the

relation R′ ⊆ ASSN × AAddress × AHeight × Atime, where now we capture the height

and address of a person at a particular time. ASSN is not sufficient to determine the

three attributes. However the set {ASSN , Atime} is a key for R′.

The notions of key and dependencies can help us construct relations which express

exactly one meaning. The first concept that is useful is that of normal forms, which

instructs how to create relations based on a set of dependencies. A set of relations

satisfy Boyce-Codd normal form (BCNF) when, for each relation R and dependency

α→ β, if α ∪ β is a subset of the attributes of R, then α must be the key for R. This

requirement forces a relation to be a function of only the attributes that are related

by a key. So for example, an illegal Boyce-Codd relation under this form would be

one based on a person’s SSN, their address, and the price of tea in China. There is

no key in this relation that will determine the price of tea in China – it is irrelevant

to the other two attributes. In short, Boyce-Codd forces relations to be as small as

38 CHAPTER 3. GENERAL PRINCIPLES OF ELABORATION TOLERANCE

possible by cutting out un-functional and therefore irrelevant attributes.

Independencies

Independencies have also been studied in the database literature. They are best

expressed by embedded multivalued dependencies, written α � β | γ, for sets of

attributes α, β, and γ. This rule holds for a relation R when, if any two tuples agree

on their values in α, then the relation contains the cross product of the attributes in

β and γ. For example, if

α = {ASSN},

β = {AKid′s Name}, and

γ = {APet′s Name},

(3.12)

and we have some relation R relating a person’s social security number to the

names of their children and pets:

R ⊆ ASSN × AKid′s Name × APet′s Name, (3.13)

then if

(314-15-9265, Anju,Amy) ∈ R, and

(314-15-9265, Abhis, Stripes) ∈ R
(3.14)

then so are

(314-15-9265, Anju, Stripes) ∈ R, and

(314-15-9265, Abhis, Amy) ∈ R
(3.15)

This independency of β and γ given α is the same as used in probabilistic rea-

soning, corresponding to the notion of conditional independence: I(β, γ | α) ⇐⇒

P (β, γ | α) = P (β | α) ∗ P (γ | α) [Pearl and Verma, 1987].

Independencies show how data is correlated through a common set of attributes.

Once this common set is known, the data becomes independent of each other. This

suggests that the correlated information should be stored in separate relations, each

3.4. DESIGN PRINCIPLES OF ELABORATION TOLERANCE 39

with the common attributes as a key. Otherwise, if we put them in the same relation,

we would acquire many repetitions, since we are taking the “cross-product” of them.

Thus, while dependencies shrink a relation to consist of only those functionally related

attributes, independencies cut the relation up further, demanding that the relation

only model one real relationship at a time.

3.4.2 Syntax Matters, or Reification is Important

Related to this notion of keys and (in)dependencies is syntax. As a motivating ex-

ample, consider two different ways of representing a cross action for the missionaries

and cannibals problem. To assert that a row action has taken place, with two rowers

cannibal1 and missionary2, from bank1 to bank2 at time t0 we write:

Row(cannibal1,missionary2, bank1, bank2, t0) (3.16)

We call this form of asserting facts synthetic syntax, because it describes the

concept of Row as being built up entirely from a vector of properties, such as rowers,

bank locations, etc. On the other hand, we could use a language with analytic syntax,

which tells one how to take statements apart:

Rowing(r)

Rower(r, cannibal1)

Rower(r,missionary2)

SourceLocation(r, bank1)

TargetLocation(r, bank2)

Time(r, t0)

(3.17)

Analytic and synthetic syntax are described in [McCarthy, 1962]. We argue that

the language presented in (3.17) is much more elaboration tolerant than that pre-

sented in (3.16). The synthetic approach is highly elaboration intolerant, as it cannot

easily handle elaborations such as changing the boat’s capacity. (3.16) also cannot

distinguish between different rowing actions occurring on different boats, as there is

no parameter in the relation used to refer to boats.

40 CHAPTER 3. GENERAL PRINCIPLES OF ELABORATION TOLERANCE

(3.16) contains a kind of closed world assumption, in the sense that the truth of

Row only depends on the arguments given. What is amazing is that this hard coded

truth is not dependent on any complex properties of the formalism, but by the most

innocuous feature – the syntax of the language. (3.16) stipulates that the Row action

only depends on whether two elements of the class of missionaries participate, so there

is no way to express that three missionaries might be involved as we could with (3.17).

Also, the concept of a Row occurring is encoded as a proposition in the language, in

direct comparison to (3.17), where it is an object. The problem with propositions is

that in first-order languages, there is no way to ascribe further properties to them –

they are not reified.

We contrast this closed world assumption idea with (3.17), which mentions exactly

what is known, no more, and no less, while (3.16) makes many other unintended

assumptions. Since (3.17) is analytic, we can keep saying more things about r, simply

by ascribing another property to it. This is what makes it so elaboration tolerant.

An intriguing observation is that the difference in syntax gives rise to different L-

structures. We can see by inspection that the form of relations in (3.17) leaves open all

possibilities which are not mentioned. It is also very amenable to adding more symbols

or relations. (3.16) already makes many alternative scenarios implicitly impossible

simply by its syntax.

But a review of database design gives us the fundamental reason why analytic

syntax is superior to the synthetic form. The object r, the rowing action in (3.17),

acts as a key with respect to each relation. Our analytic approach always implicitly

follows Boyce-Codd normal form, as it onlyascribes properties to our object r. Once

we have the identity of r, all possible facts about it (when it occurred, what boat was

used, etc.) are accessible! By reifying the row action (as opposed to treating it as

the truth of a proposition), we have highly increased the elaboration tolerance of our

language.

This reification acts as a dual to the Boyce-Codd requirement above. Boyce-Codd

is predicated on R first containing a dependency α → β. Note that our syntax

(3.16) trivially satisfies Boyce-Codd, since it does not include any α that could be

the head of a dependency. The requirement of reification espoused by analytic syntax

3.4. DESIGN PRINCIPLES OF ELABORATION TOLERANCE 41

requires every relations to contain some sort of key, thus rendering it amenable to the

Boyce-Codd constraint.

Note that our formalization in (3.17) has already decomposed

any independencies. For example, we could have had a relation

RowerSourceLocation(r, cannibal1, bank1), but this would require much repetition,

as the values of Rower and SourceLocation are independent, given r.

The superiority of analytic syntax, as opposed to synthetic syntax, explains the

Davidsonian approach [Davidson, 1966] to representing actions used in Cyc

[Cyc, 2003]. 6 In fact, this representation was chosen expressly for the purpose of

maximizing elaboration tolerance [Guha, 2003].

3.4.3 Synthetic Functions, or Operator Splitting

There is a middle ground between synthetic and analytic forms. As representationally

inadequate as synthetic syntax is, computationally it may be more appealing because

of its built-in closed world assumption. Consider if we are trying to find out if

cannibal1 participated in a row action at time t0. In the synthetic mode we would

have to look for an atom of the form

Row(cannibal1, ∗, ∗, ∗, t0), (3.18)

whereas in the analytic case, we would have to find some element r such that

Rowing(r) ∧Rower(r, cannibal1) ∧ Time(r, t0), (3.19)

which requires not only lookup but also expensive joins.

One way out of the difficulties of the previous section is that we rewrite statements

of the form in (3.16) as:

6It is interesting to note that [Davidson, 1966] addresses these same issues of synthetic versus
analytic syntax (amongst others) in his formalization of actions. Davidson concludes by advocating
a rather analytic form for expressing facts about actions, where actions are terms in the language,
and attributes are ascribed to them.

42 CHAPTER 3. GENERAL PRINCIPLES OF ELABORATION TOLERANCE

r = row(cannibal1,missionary2, bank1, bank2, t0). (3.20)

row is a function, returning an object r denoting (reifying) the rowing, but we

still have the problem of elaborating row actions which may involve different boats,

different capacities, etc. But this could be handled by extra predicates:

has third rower(r, rower3)

or

uses(r, boat2)

(3.21)

This is precisely the trick of adding action attributes used in Lifschitz’s formaliza-

tion of the missionaries and cannibals problem in [Lifschitz, 2000]. The notion behind

action attributes is the same as in operator splitting, which is used to speed up search

in [Kautz et al., 1996] and [Kautz and Selman, 1996], by reducing the number of in-

stantiations of formulas. 7

Using these “synthetic functions” with operator splitting does allow for some elab-

oration tolerance; if a function is not originally constructed to depend on a property,

we can always attribute it later with statements like (3.21). The one downside, other

than the fact that the epistemology is messy, 8 is that it will be difficult to omit de-

pendencies. Say we do not know or care about the time associated with a row action.

Then we will have to add some kind of null to the time argument position of (3.20).

We could avoid this quandary by using various synthetic functions row1, row2,

7[Kautz and Selman, 1996] translate first-order formulas to propositional ones by grounding them;
the atom move(x, y, z, i) which represents a move of object x from y to z at time i has O(n4)
instantiations, where n is the size of the domain. In contrast, the alternative representation
object(x, i) ∧ source(y, i) ∧ destination(z, i) has only O(3n2) instantiations. This representation
makes sense when there is exactly one action allowed per time step. It is ironic that this splitting
was originally introduced not to effect elaboration tolerance, but promote efficiency in search.

8By messy, we mean that fact that we will need “extraction” axioms to describe fields of the
synthetic function. For example, for the row1 action shown in (3.23), we would additionally have
to say:

Rower(row1(r1, r2, l1, l2, t), r1)
Rower(row1(r1, r2, l1, l2, t), r2)
Time(row1(r1, r2, l1, l2, t), t) . . . ,

(3.22)

and so forth, while this information is already captured by statements like (3.17).

3.4. DESIGN PRINCIPLES OF ELABORATION TOLERANCE 43

row3, . . . :

r = row1(r1, r2, l1, l2, t),

r′ = row2(r1, r2, r3, l1, l2, t),

r′′ = row3(r1, r2, r3, l1, l2),

. . .

(3.23)

which all return different row objects based on different input specifications.

We believe that the solution lies in using synthetic notions only across those

attributes that are certain to apply to all instances. For example, if time is an

attribute that might be later omissible, it should not be included in the synthetic

function. These guidelines however are sensitive to the future intended use of the

representation.

3.4.4 The Unique Roles Assumption

Probably the design principle we believe most important to advancing elaboration

tolerance is the unique roles assumption (URA) [Maier and Warren, 1982], a notion

not advertised enough in the literature, in our opinion. It is a database design princi-

ple originally applied to attributes, asserting that each attribute should play exactly

one semantic role in the database. Hence instead of using the sort Snine digit numbers

to play both the roles of an SSN and account number, we use two separate attributes,

ASSN and Aaccount number for each.

This idea can be generalized to all our symbols, in that every symbol has a unique

meaning and use in the representation. After our discussion of the semantic nature

of elaborations, we see how the unique roles assumption helps, as it forces us to use

the symbols of our language in a one-to-one correspondence with the meaning.

Having unique roles applies both to terms of our language, as well as propositions.

Consider the formalization of the missionaries and cannibals problem:

Missionaries(3)

Cannibals(3)

. . .

(3.24)

44 CHAPTER 3. GENERAL PRINCIPLES OF ELABORATION TOLERANCE

In (3.24) the symbol “3” plays two different roles, both the number of missionaries,

as well as the number of cannibals. To subsequently change either of these values will

require some understanding of the different roles of each, which in turn will require

some understanding of the formalization in (3.24). A much better approach to (3.24)

is:

Missionaries(NumM)

Cannibals(NumC)

NumM = 3

NumC = 3

. . . ,

(3.25)

where NumM and NumC are special constants used to denote the number of

missionaries and cannibals, respectively. (3.25) obeys the unique roles assumption.

We see that any elaboration that requires a change in either number will simply

require a change to NumM/NumC, in exactly one place. All the elaborator needs

to know is the meanings of NumM and NumC, and nothing else about the theory.

Example 9.5.1 shows how the URA works hand in hand with additive elaboration

tolerance.

[Parmar, 2002] called for some theory of “maximal parameterization,” where if

two quantities refer to the same value, they should employ the same parameter.

This is the converse of the unique roles assumption, which we also accept. A final

generalization of the URA that we espouse is that every meaning should have a unique

symbol/name. For example, in software engineering, macros and global variables

are use to abbreviate quantities which play special roles. Programmers purposefully

distinguish certain quantities as variables/macros, fully expecting them to be later

modified to contain different values.

This concept of unique roles also applies to propositions. Just as atoms embody

some unit of meaning, an expression built from these atoms has its own, more com-

plicated, meaning. To extend elaboration tolerance beyond relational databases, we

need to be able to name each of these more complicated concepts, and ensure that

they always play a unique role.

3.4. DESIGN PRINCIPLES OF ELABORATION TOLERANCE 45

Consider the following fragment of a formalization, adapted from [Amir, 2000]:

0 < Num(Missionaries, location, t) < Num(Cannibals, location, t) =⇒

Eaten(location, t)

0 < Num(Missionaries, location, t) ∧ At(BigCannibal, location, t) =⇒

Eaten(location, t)

. . .

(3.26)

The first axiom of (3.26) asserts that when the missionaries are outnumbered

on a bank by the cannibals, someone will be eaten. The second says that if the

BigCannibal, who is large enough to bully all of the missionaries, is co-located

with a missionary, someone will be eaten. (This is an adaption of elaboration nine

from [McCarthy, 1997].)

Now consider what happens if we want to add an elaboration about “cannibal

food.” Specifically, the missionaries will not be eaten if there is some cannibal food

in the area (elaboration eighteen). This would require us to change (3.26) to:

0 < Num(Missionaries, location, t) < Num(Cannibals, location, t) =⇒

Eaten(location, t)∨At(CannibalFood, location, t)

0 < Num(Missionaries, location, t) ∧ At(BigCannibal, location, t) =⇒

Eaten(location, t)∨At(CannibalFood, location, t)

. . .

(3.27)

This adjustment to (3.26) requires too much brain surgery. We have to find each

of the axioms pertaining to being eaten. Then, we must understand the purpose of

each of the axioms, and then know that inserting ∨At(CannibalFood, location, t) into

the consequents will give us the updated theory.

Instead, we should have recognized that the preconditions

0 < Num(Missionaries, location, t) < Num(Cannibals, location, t) and

0 < Num(Missionaries, location, t) ∧ At(BigCannibal, location, t) play special roles

46 CHAPTER 3. GENERAL PRINCIPLES OF ELABORATION TOLERANCE

in describing potentially dangerous conditions for the missionaries:

0 < Num(Missionaries, location, t) < Num(Cannibals, location, t) =⇒

Dangerous(location, t)

0 < Num(Missionaries, location, t) ∧ At(BigCannibal, location, t) =⇒

Dangerous(location, t)

Dangerous(location, t) =⇒ Eaten(location, t)

. . .

(3.28)

Then, in order to elaborate about cannibal food, we only require the one change:

0 < Num(Missionaries, location, t) < Num(Cannibals, location, t) =⇒

Dangerous(location, t)

0 < Num(Missionaries, location, t) ∧ At(BigCannibal, location, t) =⇒

Dangerous(location, t)

Dangerous(location, t) =⇒ Eaten(location, t)∨At(CannibalFoor, location, t)

. . .

(3.29)

Now not only is our tinkering of (3.28) restricted to only one axiom, we are also

confident that we have correctly implemented the desired elaboration.

Example 9.5.1 shows how these above mentioned principles can promote additive

elaboration tolerance.

As a final observation, it is interesting to note that the sole solution to the frame

problem that does not employ some sort of additive solution plus nonmonotonic-

ity is the successor state axiom approach [Reiter, 1991] and [McIlraith, 2000], which

encodes a solution to inertia in an axiom of the form

3.4. DESIGN PRINCIPLES OF ELABORATION TOLERANCE 47

Poss(a, s) =⇒

[F (x, result(a, s)) ⇐⇒ γ+
F (x, a, s) ∨ ν+

F (x, result(a, s))∨

[F (x, s) ∧ ¬γ−F (x, a, s) ∧ ¬ν−F (x, result(a, s))]],

(3.30)

where Poss(a, s) is a symbol meant to represent when an action is possible.

γ+
F (x, a, s) abbreviates the conditions that make F (x, ·) true in result(a, s), while

γ−F (x, a, s) are those which can make it false. ν+
F (x, result(a, s)) is comprised of the

static constraints which cause F (x, ·) to be true in result(a, s) while ν−F (x, result(a, s))

are those which make it false. Poss(a, s) is already used as a way to reify the action

preconditions, and although not part of the formal language, the Greek symbols are

used in practice to reify the fluent preconditions. In fact, a formalism that used the

successor state axiom approach, along with statements of the following form sepa-

rately defining these symbols

γ+
F (x, a, s) ≡def . . .

γ−F (x, a, s) ≡def . . .

ν+
F (x, s) ≡def . . .

ν−F (x, s) ≡def . . .

(3.31)

would make the action formalism much more elaboration tolerant, as each of the

modes for how an action changes a fluent are explicitly named.

Part II

Additive Elaboration Tolerance

48

Chapter 4

Additive Elaboration Tolerance

In this chapter we introduce the notion of additive elaboration tolerance, where elab-

orations are effected simply by adding the proper formulas to the axioms of our

representation. After some justifications for this modality in Section 4.1, we describe

our conceptual groundwork in Section 4.2, some of which is an extension of the frame-

work of hard and soft facts of Section 3.1. Section 4.3 walks through our conception of

two kinds of elaborations: full retraction, and full addition. Section 4.4 demonstrates

that a propositional system can be outfitted to have these two kinds of additive elab-

orations. This system is the blueprint for how we shall endow arbitrary systems with

elaboration tolerance. It also allows us to surmise some necessary properties of such

a system, described in Section 4.5.

4.1 Why Additive Elaboration Tolerance?

We have championed additive elaboration tolerance, where our representations are

altered simply by conjoining the proper formulas. As discussed in Chapter 1, there

are three main reasons for following this approach:

1. Additive elaborations approximate human discourse.

2. Changing meanings by adding formulas allows us to push the semantics of the

elaboration into the target language itself, so that the elaboration itself can be

49

50 CHAPTER 4. ADDITIVE ELABORATION TOLERANCE

reasoned about. This is the essence of the declarative approach to AI.

3. It minimizes any brain surgery we might have to perform on our representation

– all we do is find the formula corresponding to the meaning of our elaboration,

and add it to our current representation, letting the semantics take care of the

rest. The elaborator is required to know little about how the representation is

actually formalized, resulting in a nice abstraction barrier.

4.2 Tenets and Groundwork

Informally, our study of additive elaboration relies on the following assumptions and

insights, some repeated from Section 3.1:

1. The only way to alter our representation R is by adding formulas such as ψe

which specify the change in question. Formally speaking, our elaborations are

operations of the form:

e ·R = ψe(R) ∪ R = R′ (4.1)

We can imagine a representation undergoing a sequence of elaborations by con-

tinually adding more formulas, from R to ψe ∪ R to ψe′ ∪ ψe ∪ R, and so

on.

2. Our only means of “accessing” R is by means of consequence relations – in other

words, we only know what follows from our representation R using ` and |∼.

3. We use exactly two consequence relations, ` and |∼. ` is meant to infer the

hard truths from R, while |∼ is used to determine softer truths.

4. Facts derivable by ` are hard, and must always hold with respect to our elabora-

tions. Therefore, they cannot be altered by elaborations. Since our elaborations

are accomplished by adding formulas, this means `must be monotonic. This fits

in well with our notion that hard facts are not subject to revision or retraction

under any circumstances. In terms of our symbols, we can say:

4.2. TENETS AND GROUNDWORK 51

R ` φhard =⇒ ψen
∪ . . . ∪ ψe1

∪ R ` φhard, (4.2)

for any sequence of elaborations ψe1
, . . . , ψen

.

Recall that ` surveys truth across all possible worlds. If φ is a hard truth,

then it holds in every world we can imagine. If ` is monotonic, then adding

formulas to its left hand side strictly decreases (by set inclusion) the set of

worlds it checks for truth. Hence the set of hard truths can only increase in this

paradigm of additive elaborations.

5. The soft facts inferred by |∼ are based on informal arguments using uncertain

or defeasible information. In terms of possible worlds, this kind of information

restricts inference to some set of preferred worlds, a subset of all the worlds.

Since these soft facts can be uninferred upon learning new information, |∼ will

have to be nonmonotonic. Hence there are elaborations ψe1
, . . . , ψen

such that

R |∼ φsoft,

but

ψen
∪ . . . ∪ ψe1

∪ R |6∼ φsoft,

(4.3)

We add in one final assumption, that

6. Our elaborations work by selecting a different set of preferred worlds for a rep-

resentation R.

This notion was already illustrated in Figure 3.2.

Within this framework, we can represent any elaboration that can be represented

in human discourse, as we are assuming our system is strong enough to handle meta-

statements about the language within the language. If R is meant to represent the

original missionaries and cannibals problem, and ψ3→4(R) is the elaboration that

changes the numbers of missionaries and cannibals each from three to four, then

ψ3→4(R) ∪ R should represent the new problem, which turns out to be unsolvable.

In terms of the illustration in Figure 3.2, the original set of preferred models of R

52 CHAPTER 4. ADDITIVE ELABORATION TOLERANCE

are those in which the numbers of missionaries and cannibals are both three. Adding

ψ3→4(R) to R pushes the focus of preferred models to another part of the space, where

there are four missionaries and four cannibals, as is shown below in Figure 4.1.

All worlds of R All worlds of ψ3→4(R) ∪ R

Preferred worlds of R
where M = 3 ∧ C = 3

Preferred worlds of ψ3→4(R) ∪ R
where M = 4 ∧ C = 4

Apply
elaboration
ψ3→4(R)

Figure 4.1: Adding ψ3→4(R) to R results in switching the set of preferred worlds
where the numbers of missionaries and cannibals are both four.

In terms of our framework, the fact that there were three missionaries and three

cannibals must have been soft, or defeasible. The reason why is because we could

choose another set of preferred models where in fact there are four of each set. It may

seem contradictory that this fact is soft, because it was explicitly mentioned in the

description of R, and appears to be a hard truth. This contradiction arises because

of the flexibility of human language, where any utterance can be retracted or changed

at a later time, without contradiction. The semantics of human discourse are such

that every expressible statement is defeasible, and therefore in our terms a soft fact.

Hence when R corresponds to some representation in a human language, the set of all

worlds describing R is essentially all worlds, as almost every statement that is uttered

is a soft fact (i.e. subject to retraction). 1

In this thesis we take this insight to heart, and use |∼ exclusively as our method

for inference, as it deals in the realm of what is likely, which is how any inference that

efficiently deals with the real world must work.2 In this context, ` acts as the dual

1This apparent contradiction buttresses our agnostic view of the actual representation of R, and
the use of ` and |∼ to inspect it indirectly.

2[Costello, 1997] notes that “In life, as in the jungle, waiting until you are absolutely sure that
the large striped animal is indeed a tiger is often fatal.”

4.3. RETRACTION AND ADDITION OF FORMULAS 53

modality to |∼, only determining what facts are necessary. Or, conversely, we can use

` to determine what facts are possibly true, by the formula R 6` ¬φ – it is not the

case that in all worlds ¬φ holds, which means there is a world of R where φ holds.

A brief aside: Notice that we cast our elaborative formula ψ to be a function of

the current representation R, as in ψ3→4(R). Had we not allowed the dependence,

the commutativity of ∪ would force some contradictions, such as that:

ψ4→3 ∪ ψ3→4 ∪ R = ψ3→4 ∪ ψ4→3 ∪ R. (4.4)

The left hand side of (4.4) should be the original missionaries and cannibals prob-

lem with three of each, while the right hand side seems to represent the problem with

four of each. Explicitly recording the dependence of ψ on the representation to which

it is applied avoids this problem, shown in (4.5).

ψ4→3(ψ3→4(R) ∪ R) ∪ ψ3→4(R) ∪ R 6= ψ3→4(ψ4→3(R) ∪ R) ∪ ψ4→3(R) ∪ R.

(4.5)

In the sequel, we will often drop the dependence of our elaborations on the rep-

resentation, and let the order in which formulas are conjoined indicate the order in

which they were applied. We will assume ∪ is right associative, so that

ψe3
∪ ψe2

∪ ψe1
∪ R = ψe3

∪ (ψe2
∪ (ψe1

∪ R)) (4.6)

4.3 Retraction and Addition of Formulas

We have defined additive elaboration tolerance in terms of adding the proper elab-

orative formulas to our representation R. In this section we make our first steps

in studying how the semantics of R can implement our desired elaborations, within

the language. To do so, we formalize two major classes of additive elaborations: re-

tracting and adding formulas. Once we have these means of essentially adding and

subtracting statements from our representation, representing arbitrary elaborations

54 CHAPTER 4. ADDITIVE ELABORATION TOLERANCE

boils down to whether they can be expressed in the base representation R. If a formal-

ism cannot represent some elaboration, then by definition the elaboration will have

to be implemented by altering the syntactic form – exactly the kinds of operations we

wish to avoid. In fact, [McCarthy, 1998] observes that “elaborations not expressible

as additions to the object language representation may be treatable as additions at

a meta-level expression of the facts.” We want to maximize the first category, and

minimize the second.

We discuss retraction before addition, because the definition of addition will de-

pend in part on retraction.

4.3.1 Retractable Formulas

First of all, we want to be able to retract formulas by adding the appropriate elabo-

ration. By this we mean, given any α that is a soft (defeasible) fact of R, we want

to be able to add some sentence ψ∅(α,R) to R resulting in a representation which is,

by default, agnostic about α. This idea seems paradoxical at first, until we note our

ψ∅(α,R) is equivalent to the English statement “forget α in R.”

Of course, this property of full retraction by definition only applies to the set of

soft facts, since it is impossible to ever retract a hard fact. (There are no alternative

worlds to go to where the hard fact does not hold.)

In other words, we want ψ∅(α,R) to obey:

ψ∅(α,R) ∪ R |6∼ α (4.7)

But this kind of retractability is easy to satisfy, if we have negation (¬) in our

language, as we will generally assume. To accomplish (4.7), simply set ψ∅(α,R) to

¬α. This is clearly not what we want, because instead of being agnostic about α, we

will infer it does not hold. If a person is told to “forget that Tweety flies,” he does not

instead infer in retribution that Tweety does not fly. In fact, he believes that either

case is possible, and he would not be surprised if either fact became later known to

be true.

4.3. RETRACTION AND ADDITION OF FORMULAS 55

Hence, we need to come up with a stronger definition of what we mean by re-

tractability to accommodate negation. Intuitively, if we do not want to know either

α or ¬α, in terms of possible worlds we want our ψ∅(α,R) to switch the focus of the

current set of preferred worlds, to some other set where both α and ¬α holds. If we

loosely interpret R |∼ α as meaning that α holds in all preferred worlds of R, then

we want:

ψ∅(α,R) ∪ R |6∼ α ∧

ψ∅(α,R) ∪ R |6∼ ¬α,
(4.8)

as this connotes the meaning that “there is a preferred world of ψ∅(α,R) ∪ R

where α does not hold, and there is a preferred world of ψ∅(α,R) ∪ R where ¬α

does not hold.” Syntactically, this also makes sense, as after absorbing elaboration

ψ∅(α,R), we cannot softly infer whether α holds or not.

This notion of retractability is still not adequate for our purposes. We mentioned

earlier that we plan to add sequences of elaborations to our representation, and a

proper definition of retractability should allow for us to retract a formula after any

intervening sequence of elaborations. This notion of being retractable in the context

of any elaboration we call full retractability. If ΨE is some class of elaborations closed

under sequence, we can say α is fully retractable in R if it satisfies:

(∀Ψ ∈ ΨE)[(∃ψ∅ ∈ ΨE)[(ψ∅ ∪ Ψ ∪ R |6∼ α) ∧ (ψ∅ ∪ Ψ ∪ R |6∼ ¬α)]] (4.9)

(4.9) indicates that no matter what elaborations from some class ΨE have been

added to R, we can always find some other formula ψ∅ to persuade us to be agnostic

about α.

Unfortunately, this definition is not quite correct. If we have an elaboration of

the form ψ!(α) in ΨE establishing a hard truth, akin to asserting “α is true and can

never become false, no matter what is ever subsequently said about it,” then full

retractability will never be true for α. In order to allow for full retractability within

the presence of these formulas we must restrict our definition:

56 CHAPTER 4. ADDITIVE ELABORATION TOLERANCE

α is fully retractable if:

(∀Ψ ∈ ΨE)[(Ψ ∪ Γ 6 `α) ∧ (Ψ ∪ Γ 6 `¬α) =⇒

(∃ψ∅ ∈ ΨE)[(ψ∅ ∪ Ψ ∪ R |6∼ α) ∧ (ψ∅ ∪ Ψ ∪ R |6∼ ¬α)]].
(4.10)

This is the definition of full retractability that we will employ throughout this

thesis. Our precondition that (Ψ ∪ R 6 `α) ∧ (Ψ ∪ R 6 `¬α) means that Ψ forces

neither α, nor ¬α, to hold in the elaborated representation Ψ ∪ R. In other words,

there is no formal proof in Ψ ∪ R to show either case. If this is true, then α is fully

retractable when we can add a formula ψ∅ to block even any informal argument that

could lead to concluding the truth of α. Of course α is trivially fully retractable if

(Ψ ∪ Γ ` α) ∨ (Ψ ∪ Γ ` ¬α) for those Ψ ∈ ΨE .

We can also interpret (4.10) in terms of worlds. Say there are worlds of Ψ ∪ R

where α holds and worlds where ¬α holds. Then α is fully retractable if we can find

some formula ψ∅ which when added to Ψ ∪ R, will change the focus of preferred

models to include both models where α, and its negation holds. The precondition

just reassures us that there are such models that can be included in our new set of

preferred worlds. The intuition is illustrated in Figure 4.2.

Figure 4.2 shows how as we add elaborations, our set of all models gets smaller

since ` is monotonic. It appears possible to “run out” of models, particularly when

our representation has only finitely many formulas. It is reasonable to assume that

R requires some minimal level of complexity in order to admit full retraction. We

discuss this further in Section 4.5, while Theorem 5.6.3 proves that the minimal level

of complexity required is infinitely many symbols in the language, given a typical |∼.

4.3.2 Addable Formulas

In this section we investigate the notion of adding facts to our representation R. At

first this idea seems unnecessary – if one wants to conclude α, simply add α to the

representation. However in practice it may not be as simple as that. α may directly

contradict R, so that the result, α ∪ R may be inconsistent. Even worse, we may

later decide that we want to retract α, and depending on our semantics, it may not

4.3. RETRACTION AND ADDITION OF FORMULAS 57

Preferred models of Ψ ∪ R Preferred models of ψ∅ ∪ Ψ ∪ R

All models of
Ψ ∪ R

All models of
ψ∅ ∪ Ψ ∪ R

¬αα

α
Apply

elaboration
ψ∅

¬αα

α

Figure 4.2: A graphical depiction of full retraction. The dots correspond to models,
and the shaded ellipses pick out sets of models. Notice how the set of all models
of Ψ ∪ R becomes smaller with the addition of ψ∅, while the preferred ones simply
change.

be possible to do so.

To sidestep these problems, we instead introduce a formula ψ+(α,R) which does

the adding for us. It obeys:

ψ+(α,R) ∪ R |∼ α ∧

Consis(ψ+(α,R), R) ∧

fully-retractable(α, ψ+(α,R) ∪ R) ∧

Consis(¬α,R) =⇒ Consis(¬α, ψ+(α,R) ∪ R)

(4.11)

We need all four conjuncts in (4.11), because it is not enough for ψ+(α,R) to

force R to conclude α; the combination ψ+(α,R) ∪ R must be consistent as well, as

otherwise it would be enough to set ψ+(α,R) to ⊥, and thus conclude any formula.

We define consistency in terms of ` in (4.12). α is consistent in R if R does not

formally prove ¬α. Semantically speaking, this means there is a world of R where α

58 CHAPTER 4. ADDITIVE ELABORATION TOLERANCE

holds.

Consis(α,R) ≡def R 6` ¬α (4.12)

We also want α to be fully retractable in the new representation ψ+(α,R) ∪ R.

By this we mean we want the freedom to step back from any of our declarations if we

later desire. To have this property, we need to know that ¬α was preserved in at least

one world, through the addition of ψ+(α,R) ∪ R. These last two conditions taken

together prevent our ψ+(α,R) in question from being set to our proposed ψ!(α,R),

which permanently asserts α.

We are almost done refining our notion of full addition. As with our definition of

full retraction, we want to be able to force R to consistently conclude α, even after

some arbitrary sequence of elaborations from some set ΨE are added to R. Hence we

write:

(∀Ψ ∈ ΨE)(∃ψ+ ∈ ΨE)[Consis(ψ+,Ψ ∪ R) ∧

(ψ+ ∪ Ψ ∪ R |∼ α) ∧

fully-retractable(α, ψ+ ∪ Ψ ∪ R) ∧

Consis(¬α,Ψ ∪ R) =⇒ Consis(¬α, ψ+(α,R) ∪ Ψ ∪ R)

(4.13)

This formulation of what we call full addition is close to what we desire. What we

have neglected to include is that our Ψ ∈ ΨE could be the dreaded ψ!(¬α,R), which

means that adding ψ+(α) would be impossible. As we did for full retractability, we

will have to restrict our definition of full addition to only certain configurations of

Ψ ∪ R where it is consistent to have α hold. In fact, we say α is fully addable if

4.3. RETRACTION AND ADDITION OF FORMULAS 59

(∀Ψ ∈ ΨE)[Consis(α,Ψ ∪ R) =⇒

(∃ψ+ ∈ ΨE)[Consis(ψ+,Ψ ∪ R) ∧

(ψ+ ∪ Ψ ∪ R |∼ α) ∧

fully-retractable(α, 〈L, `, |∼, ψ+ ∪ Ψ ∪ R〉) ∧

Consis(¬α,Ψ ∪ R) =⇒ Consis(¬α, ψ+(α,R) ∪ Ψ ∪ R)]]

(4.14)

We can interpret this definition as follows. Say Ψ is an elaboration that when

applied to R, does not formally derive ¬α. Then we can find some elaboration

ψ+(α,Ψ ∪ R) which, when applied to Ψ ∪ R will result in a consistent representation,

that will by default infer α. Furthermore, α can be retracted (if it is possible to do

so), no matter what other subsequent elaborations have been added to Ψ ∪ R. Again,

we say α is trivially fully addable for those Ψ ∈ ΨE such that ¬Consis(α,Ψ ∪ R), or

Ψ ∪ R ` ¬α.

The semantic explanation behind this definition is also intuitive. As long as our

elaboration Ψ of R results in a representation which contains a world where α holds,

then we can find a ψ+(α,Ψ ∪ R) to add to Ψ ∪ R to switch the set of preferred models

to include only those where α holds. And yet, we can always subsequently find some

other retraction formula ψ∅(α) to push the set of preferred worlds to another focus

where α is unknowable. This intuition is illustrated in Figure 4.3.

60 CHAPTER 4. ADDITIVE ELABORATION TOLERANCE

Preferred models of Ψ ∪ R

Apply elaboration ψ+

Preferred models of
ψ+ ∪ Ψ ∪ R

Preferred models of ψ∅ ∪ . . . ∪ ψ+ ∪ Ψ ∪ R

Can retract α with ψ∅

α holds here

α

α

α

α

α holds here

α

α

α

α

α holds here

α

α

α

α

Figure 4.3: A graphical depiction of full addition. The dots correspond to worlds,
and the shaded ellipses pick out sets of worlds. Provided there is a world describing
Ψ ∪ R where α holds, we can add ψ+ to our axioms, to change the set of preferred
worlds to lie entirely within the extent of Mod(α). Furthermore, this set of models
is non-empty. The second dotted transformation illustrates that we can always later
move the set of preferred models out of Mod(α), if there is a world remaining where
¬α holds.

4.4 A Simple System with Full Retraction and Full

Addition

In this section, we provide a small taste of how we plan to construct elaboration

tolerant representations from those which are not. Let Prop be some finite set of

propositional symbols, and let LProp be the propositional language built from these

4.4. A SIMPLE SYSTEM WITH FULL RETRACTION AND FULL ADDITION61

atoms. This section shows how to augment an arbitrary propositional LProp-theory

Γ so that it is fully retractable and fully addable for any formula within the original

language LProp. This construction should give the reader a proper understanding of

the workings of the general constructions which are to follow, as the fundamental

principles are the same.

Our construction is straightforward: from our LProp-theory Γ, we construct the

abnormalized version ΓAb, which is simply the set of statements Ab(n) ∨ γ for each

γ ∈ Γ. Ab is a new unary predicate and n a natural number, different for each γ. We

let ` be the usual classical inference relation over our new language LProp ∪ {Ab} ∪ N.

Since every LProp formula is prefixed with Ab(n) in ΓAb, we see that there are no hard

non-tautological truths of ΓAb in the language LProp.

Our defeasible inference relation |∼ is just a version of circumscription where the

extension of Ab is minimized, and all other symbols are varied.3 In other words, |∼

will assert a fact iff it holds in all Ab-minimal models. Formally, we can define:

∆ |∼ φ ≡def Circ[∆[Ab];Ab;Prop] ` φ (4.15)

Since every sentence in ΓAb is prefixed with an Ab, the circumscription provides

a natural pressure to assume as many LProp-propositions hold as possible, without

falling into inconsistency.

This natural pressure also provides us with a means to construct our ψ∅(γ) and

ψ+(γ). Intuitively, the Ab in each sentence Ab(n) ∨ γ is a label which can be used as

a “gate” to turn off γ, when so desired, as nicely observed in [McDermott, 1987]. In

order to retract γ from our set of conclusions, we simply add the atom Ab(n) to the

sentences in ΓAb, and then let circumscription take care of the rest.

This is the idea, although in this simple form, will require too much brain surgery

by our standards. Say ΓAb contains the set of statements

3If Prop were not finite, our standard circumscription formula would be infinitary. In the general
case, this will not matter, as we will use a semantic version of model preference.

62 CHAPTER 4. ADDITIVE ELABORATION TOLERANCE

Ab(n1) ∨ γ1,

Ab(n2) ∨ (γ1 =⇒ γ2),

. . . ,

Ab(ni) ∨ (γi−1 =⇒ γi),

(4.16)

and we want to retract γi. Then we will first have to look for each of these

deduction chains in ΓAb, and then decide where to “cut” them by asserting Ab(nj),

for some j between 1 and i. Furthermore, in this framework it is not clear how to

achieve full addition, that is, add a statement to force our set of axioms to conclude

γ. We could in fact just add γ to our axioms, but then we could never retract it.

There is a much more elegant solution to retract γ besides meticulously asserting

Abs. The trick is to “destabilize” ΓAb. As we mentioned before, the circumscriptive

aspect of |∼ provides a natural pressure to push the Abs to be false, and therefore

each accompanying γ to be true. Consider what happens if we add the statements

Ab(n+) ∨ γ and Ab(n−) ∨ ¬γ, where n+ and n− are numbers not mentioned in the

rest of the theory ΓAb. Then, the pressure of circumscription will be forced to choose

between making Ab(n+) true and making Ab(n−) true. Since n+ and n− do not

appear anywhere else in the theory, and neither γ nor ¬γ is a hard fact, the theory

cannot express a preference over which model to choose. Hence it will choose both:

there will be incomparable Ab-minimal models both where γ holds and models where

¬γ holds.

Thus we can define our ψ∅ to be:

ψ∅(γ) = (Ab(n+) ∨ γ) ∧ (Ab(n−) ∨ ¬γ) (4.17)

Intuitively, our ψ∅(γ) “carves” out the space of models as shown in Figure 4.4.

4.4. A SIMPLE SYSTEM WITH FULL RETRACTION AND FULL ADDITION63

All models of
ψ∅(γ) ∪ ΓAb

All models
of ΓAb

Ab-minimal models
of ψ∅(γ) ∪ ΓAb

where Ab(n+) ∧ ¬Ab(n−)
holds

Ab-minimal models
of ψ∅(γ) ∪ ΓAb

where ¬Ab(n+) ∧ Ab(n−)
holds

Ab-minimal models of ΓAb

Figure 4.4: How ψ∅(γ) carves out the space of minimal models. The gray area repre-
sents the models of ΓAb, with the Ab-minimal models toward the bottom. The white
region represents the models of ψ∅(γ) ∪ ΓAb. Note how it generates two incomparable
sets of Ab-minimal models, one where Ab(n+) ∧ ¬Ab(n−) holds, and the other where
¬Ab(n+) ∧ Ab(n−) holds.

We will formally prove that ψ∅ implements full retraction in Chapter 8 when

we similarly augment arbitrary systems. For now we trust ψ∅ properly does its job

with respect to LProp, and instead pause to extol its virtues. Compared to picking

and setting Abs to retract a formula, adding ψ∅ is much simpler. It requires no

computation, nor consideration of the form of the theory ΓAb, save for which labels

have already been used, a very minor consideration. ψ∅ by its construction satisfies

[Shanahan, 1997]’s requirement that its size be on order of the information being

added. Also, it turns out ψ∅ works regardless of what sequence of other elaborations

from ΨE have been applied to ΓAb. This is actually quite a strong statement, as it

turns out ΨE can contain all elaborations which describe retraction and addition of

formulas.

For now we provide a simple example showing how retraction works:

Example 4.4.1 (Retraction of Formulas in LProp). Consider the LProp-theory Γ:

64 CHAPTER 4. ADDITIVE ELABORATION TOLERANCE

α

α =⇒ β
(4.18)

Then our abnormalized ΓAb is:

Ab(1) ∨ α

Ab(2) ∨ (α =⇒ β)
(4.19)

In all Ab-minimal models, it is easy to see that α and α =⇒ β, and therefore β

holds:

Ab(1) ∨ α,Ab(2) ∨ (α =⇒ β) |∼ α,

|∼ α =⇒ β,

|∼ β

(4.20)

Let us say we want to retract β. There are classical models of (4.19) where β and

¬β hold, or equivalently, ΓAb 6` β ∧ ΓAb 6` ¬β. Hence we can consistently add

ψ∅(β) = (Ab(3) ∨ β) ∧

(Ab(4) ∨ ¬β)
(4.21)

to the sentences in (4.19). The Ab-minimal models of Ab(1) ∨ α,Ab(2) ∨ (α =⇒

β), Ab(3)∨β,Ab(4)∨¬β can be divided into three classes entailing the three formulas:

Ab(4) ∧ α ∧ β

Ab(2) ∧ Ab(3) ∧ α ∧ ¬β

Ab(1) ∧ Ab(3) ∧ ¬α ∧ ¬β

(4.22)

From (4.22), we can see that neither β nor ¬β holds in the resulting Ab-minimal

models – β has been retracted! Also, we can see how the models correspond to the

minimal change required to retract β. The first class retracts ¬β, allowing for the

models where α∧ β hold. The second instead decides to retract both the implication

α =⇒ β and the fact that β holds, resulting in α ∧ ¬β. Finally the third removes

the assertions α and β, resulting in ¬α ∧ ¬β. As mentioned before, the form of the

theory matters little in the construction of our ψ∅, although it may affect what the

4.4. A SIMPLE SYSTEM WITH FULL RETRACTION AND FULL ADDITION65

minimal models are.

There also turns out to be an elegant solution for adding formulas, if we leverage

the fact that our abnormalities use numbers (N) to label the statements. If we want to

force our representation to softly conclude γ, we could add Ab(n)∨γ, where n is again

some number not mentioned in ΓAb. Then we would hope that the circumscriptive

pressure would force us to conclude γ, as asserting Ab(n) unnecessarily is discouraged.

However this is not enough – there could be other statements in ΓAb directly contra-

dicting γ, which would result in the twin valleys shown in Figure 4.4. Namely, ΓAb

could just be Ab(n′)∨¬γ. By the arguments for retraction, Ab(n)∨γ,Ab(n′)∨¬γ |6∼ γ.

Not only must we promote γ by some formula like Ab(n) ∨ γ, we must also ac-

tively discourage any competing formulas which might conclude the opposite. This

requirement reverts to the previous problem of having to search for and break deduc-

tive chains of formulas which entail, in this case, ¬γ. We can avail ourselves of this

complication by taking advantage of the ordering on our numbers.

Say in fact we choose n in Ab(n)∨γ to be larger than all other numbers mentioned

in ΓAb. Now consider a model of Ab(n) ∨ γ,ΓAb where in fact ¬γ holds. Ab(n) will

have to hold in this model, but we must penalize this structure further, to ensure

it cannot be an Ab-minimal model. The way to do so is to add another statement

of the form (∀x)[Ab(n) ∧ x < n =⇒ Ab(x)]. Since n is larger than all other

numbers mentioned in ΓAb, any structure which entails ¬γ, and therefore Ab(n), will

be drastically penalized by having all Abs with parameters less than n be set to >.

It turns out, as proved in Chapter 8, these two statements are enough to guarantee

full addition, and hence correspond to our ψ+(γ):

ψ+(γ) = (Ab(n) ∨ γ) ∧ (∀x)[Ab(n) ∧ x < n =⇒ Ab(x)], (4.23)

where quantification is meant to be over the natural numbers. The fact that ψ+(γ)

implements full addition is also proved in Chapter 8. For now, we pause to admire

ψ+ a bit. First, its construction only depends on the highest number mentioned in

ΓAb. Since it implements full addition, this means we can apply any other sequence

of elaborations from ΨE (which will be shown to include retractions and additions of

66 CHAPTER 4. ADDITIVE ELABORATION TOLERANCE

formulas) to ΓAb, and still get the desired result. What is most interesting, however,

is to look at what ψ+ means. Intuitively, the first conjunct threatens to assert Ab(n)

if γ is not true in a structure. But threat is dwarfed by the second conjunct, which

asserts that when Ab(n) holds, all other Abs less than it must necessarily be set to >,

a much larger penalty than Ab(n). In a loose sense, if structures want to minimize

their extension of Ab, they would do well to assert γ rather than ¬γ

We conclude this section with two more examples.

Example 4.4.2 (Addition of Formulas in LProp). Consider the theory ΓAb:

Ab(1) ∨ α

Ab(2) ∨ β

Ab(3) ∨ (α ∧ β =⇒ γ)

(4.24)

The Ab-minimal models of this theory entail α, β, and γ. Say we wanted to add

the conclusion ¬γ. Our updated set of axioms are:

Ab(1) ∨ α

Ab(2) ∨ β

Ab(3) ∨ (α ∧ β =⇒ γ)

Ab(4) ∨ ¬γ

(∀x)[Ab(4) ∧ x < 4 =⇒ Ab(x)]

(4.25)

The Ab-minimal models in this case consist of three types:

Ab(3) ∧ α ∧ β ∧ ¬γ

Ab(2) ∧ α ∧ ¬β ∧ ¬γ

Ab(1) ∧ ¬α ∧ β ∧ ¬γ

(4.26)

Notice that ¬γ holds in all models! Also notice how we again only retract to

the models which correspond to the minimal changes we would have to make to our

database in order to accommodate ¬γ. In some sense, this is a cautious kind of

reasoning, because we do not prefer one eventuality over another.

Example 4.4.3 (Continuation of Example 4.4.2). Say we change our mind, and

prefer γ to hold instead. Our theory consists of

4.5. PROPERTIES OF ADDITIVE ELABORATIVE TOLERANCE 67

Ab(1) ∨ α

Ab(2) ∨ β

Ab(3) ∨ (α ∧ β =⇒ γ)

Ab(4) ∨ ¬γ

(∀x)[Ab(4) ∧ x < 4 =⇒ Ab(x)]

(4.27)

Currently, this theory softly entails ¬γ. What happens when we add ψ+(γ) =

(Ab(5) ∨ γ) ∧ (∀x)[Ab(5) ∧ x < 5 =⇒ Ab(x)]?

After wading through the mathematics, we end up with four kinds of models of

the form:

Ab(1), Ab(2), Ab(3), Ab(4), α, β, γ

Ab(1), Ab(2), Ab(3), Ab(4), α,¬β, γ

Ab(1), Ab(2), Ab(3), Ab(4),¬α, β, γ

Ab(1), Ab(2), Ab(3), Ab(4),¬α,¬β, γ

(4.28)

Once again, γ holds, but one worry is that we have lost information about α

and β, as in the face of this new elaboration, we would naturally assume them to

be true again. But then on the other hand, this may make sense – if a person

asserts γ and then ¬γ, this blatant about-face should make us not believe any of

their assertions up to that point. This phenomenon is similar to what happens in the

belief revision system of [Boutilier, 1996], except that only the facts caught in the

intervening contradictory sequence are lost.

4.5 Properties of Additive Elaborative Tolerance

Figures 4.2 and 4.3 illustrate how our set of preferred worlds ebbs and flows with

regard to the models of α and ¬α as directed by our two elaborative formulas ψ∅(α,R)

and ψ+(α,R). The set of worlds used by the monotonic ` steadily becomes smaller

and smaller. On the other hand, those picked out by nonmonotonic |∼ changes more

freely.

These two properties of full retractability and full addition require our R to have

68 CHAPTER 4. ADDITIVE ELABORATION TOLERANCE

some special properties. If we want to be able to keep elaborating our representations

by adding formulas indefinitely, it seems there must be enough – infinitely many –

models of our representations, so that we never “run out” of worlds in which to ascribe

truth. Hence it is unlikely, for example, that R can be represented as a propositional

logic with finitely many atoms. Theorem 5.6.3 shows this fact formally, that in fact, a

system that has non-trivial full retraction and addition will require the use of infinitely

many formulas to do the retractions and additions.

It is also impossible within this framework for our consequence relation |∼ to be

monotonic. We have indicated some assumption of nonmonotonicity throughout this

chapter, but formally show this in Corollary 5.6.1.

These results may seem unintuitive, because in practice we use finite languages

to express our motivations. The source of the infinity comes from the fact that we

can arbitrarily retract and add formulas, as many times as we desire. Hence we can

imagine that we can have full retraction and addition over a finite language, as long as

there are infinitely many symbols left in the background to implement our retractions

and additions. Intuitively these infinitely many formulas are the fodder to provide

these infinitely many models. In the example in Section 4.4, the infinity is provided

by the labels n ∈ N. These numerical labels allow us to timestamp our assertions.

Another way to view the situation is that our language already contains infinitely

many symbols, but our only means of access, the inference relations ` and |∼, can

only discern formulas built from some smaller (finite) set of symbols. This fits in with

the notions of incomplete information and possible worlds.

The view of having a larger language within which to express our elaborations

additively is not new. We argue that mingling our meta level declarations with

the object language is necessary if we are to have powerful enough elaborations. Ap-

proaches such as belief revision which divorce the meta data (epistemic entrenchment)

from the data itself will always be inadequate.

We will formally show how to add symbols to give a representationR full retraction

and full addition in Chapter 7. This chapter will also demonstrate what other formal

requirements R must satisfy to have these nice properties. But first we present some

formal infrastructure in Chapters 5 and 6.

Chapter 5

Extended Axiomatic Formal

Systems

In this thesis we use what we call extended axiomatic formal systems to model our

representations. This is an extension of the axiomatic formal systems 〈L, ` , Γ〉 used

in [Giunchiglia and Walsh, 1992] to model abstractions.

In Chapter 3, we introduced the concept of hard and soft consequences ` and

|∼. Section 5.1 wraps these concepts, along with information about a representa-

tion’s language L and set of core axioms Γ, into a bundle, which we call an extended

axiomatic formal system of the form 〈L, `, |∼, Γ〉. This is our means of gener-

ally characterizing representations. Section 5.2 provides an accompanying intuitive

semantic characterization.

After this, we consider those extended axiomatic formal systems whose semantics

can be characterized in terms of choice functions in Section 5.3. Choice functions

are one way to abstractly characterize semantics for some consequence relations. We

call this class of representations extended axiomatic formal systems with choice (Sec-

tion 5.4). We copy the exposition of choice functions used in [Lehmann, 2001]. The

great benefit of this characterization is that it provides a nice framework in which

we can combine two such systems to produce another system, retaining the desirable

properties of its parents, as will be shown in Chapter 6.

But before doing so, we pause to construct formal definitions of full retraction and

69

70 CHAPTER 5. EXTENDED AXIOMATIC FORMAL SYSTEMS

full addition in Section 5.5, and then formally prove some ramifications of a system

with these properties, in Section 5.6.

5.1 Extended Axiomatic Formal Systems

Definition 5.1.1 (Extended Axiomatic Formal Systems). An extended ax-

iomatic formal system is a four-tuple of the form:

〈L, `, |∼, Γ〉, (5.1)

where L is some language, ` and |∼ consequence relations, and Γ some L-theory.

As for ` and |∼, there is only one formal restriction, that of supraclassicality:

Supraclassicality
Γ ` α

Γ |∼ α
(5.2)

Supraclassicality ensures that every hard consequence is included as a soft conse-

quence. Semantically, this reinforces our notion that every preferred possible world

of Γ is also a possible world of Γ. As mentioned in Chapter 4, we will usually treat

` as some monotonic, classical inference relation, while |∼ is nonmonotonic. |∼ must

be nonmonotonic, as additive elaboration tolerance requires we effect our elaborations

simply by adding formulas to the left hand side of |∼.

5.2 The Semantics of Extended Axiomatic Formal

Systems

Let L be a language. [Lehmann, 2001] gives some theorems showing when a con-

sequence relation |∼ ⊆ 2L × L satisfying certain properties has an accompanying

semantics in terms of choice functions. These theorems give us an alternative way of

viewing how our consequence relation works, providing further insights. IfM is some

non-empty set, and |= ⊆ M × L, then we can define the models of an L-theory Γ

as Mod(Γ):

5.3. CHOICE FUNCTIONS 71

Mod(Γ) =def {m ∈M | (∀φ ∈ Γ)[m |= φ]} (5.3)

We can go in the other direction and show how a set of models X ⊆M relate to

L-formulas:

Th(X) =def {φ ∈ L | (∀m ∈ X)[m |= φ]} (5.4)

For a given consequence relation ` ⊆ 2L × L, Alfred Tarski has shown (and

[Lehmann, 2001] gives a version of this proof) that for any L-theory Γ, there are a

set of modelsM and satisfaction relation |= such that

Γ ` φ ⇐⇒ φ ∈ Th(Mod(Γ)), (5.5)

provided ` satisfies the conditions of inclusion, cut, and monotony, which are

consequence rules defined below in (5.6). This representation theorem (and others

like it) are important because they give conditions under which we can find a set of

semantics (M and |=) which can underlie `/|∼.

Inclusion Γ, φ ` φ

Cut
Γ ` φ, Γ, φ ` ψ

Γ ` ψ

Monotony
Γ ` φ

Γ, ψ ` φ

(5.6)

5.3 Choice Functions

We can generalize the framework of Sections 3.1 and 4.2 to talk about an intuitive

class of consequence relations that are determined semantically. Consider a choice

function f : 2M → 2M. What f does is, given a set of models, picks out the ones

which are best, or most preferred. We can then define our consequence relation |∼ on

an L-theory Γ as:

72 CHAPTER 5. EXTENDED AXIOMATIC FORMAL SYSTEMS

Γ |∼ φ ≡def φ ∈ Th(f(Mod(Γ))) (5.7)

which can be equivalently expressed as:

Γ |∼ φ ≡def f(Mod(Γ)) ⊆Mod(φ) (5.8)

What this definition means is that given a theory Γ, we first take its models, pick

out the preferred or “best” models (using f), and then find out what formulas hold

in this restricted (sub)set, as shown in Figure 5.1.

Best models
of Γ

All models of Γ
f

Figure 5.1: f chooses the best models of Γ.

This kind of operator meshes with our intuitions of how our soft facts are those

that hold in some preferred or most likely set of worlds, as opposed to all of them.

Our f provides an illuminating semantic counterpart to our |∼. Classical inference

can be represented by f being the identity function.

We include some other properties that our consequence relation may obey in (5.9),

depending on the behavior of f :

5.3. CHOICE FUNCTIONS 73

Inclusion Γ, φ |∼ φ

Monotonicity Γ ⊆ B ∧ Γ |∼ φ =⇒ B |∼ φ

Right Monotonicity Γ |∼ φ ∧ φ ` ψ =⇒ Γ |∼ ψ

Right Conjunction Γ |∼ φ ∧ Γ |∼ ψ =⇒ Γ |∼ φ ∧ ψ

Left Logical Equivalence Γ ≡ B ∧ Γ |∼ φ =⇒ B |∼ φ

Left Disjunction α |∼ φ ∧ β |∼ φ =⇒ α ∨ β |∼ φ

Cautious Monotonicity Γ |∼ φ ∧ Γ |∼ ψ =⇒ Γ, φ |∼ ψ

(5.9)

Clearly f must satisfy some constraints in order for |∼ to make any sense. Some

properties ascribed to f throughout this thesis include:

Contraction (∀X)[f(X) ⊆ X]

Coherence (∀X,Y)[X ⊆ Y =⇒ X ∩ f(Y) ⊆ f(X)] (5.10)

Contraction and coherence [Chernoff, 1954], [Sen, 1970], [Moulin, 1985] are stan-

dard notions in the literature. Contraction requires f to restrict its set of “best”

models to the set from which it chooses them, as we have already depicted in Fig-

ure 5.1. Coherence is a little more complicated. Essentially, if X is a subset of Y ,

x ∈ X, and x is one of the “best” models chosen from Y , then it should be one of the

“best” models of X. [Lehmann, 2001] showcases these properties in his work.

There are other properties that we will find useful, faithfulness and φ-reflection:

Faithfulness f(X) = ∅ =⇒ X = ∅

φ-Reflection Y ⊆ X ∧ φ,¬φ 6∈ Th(f(X)) ∧ φ,¬φ 6∈ Th(Y) =⇒

φ,¬φ 6∈ Th(f(Y))

(5.11)

Faithfulness is used to make sure f is not too picky – the only way it can return

74 CHAPTER 5. EXTENDED AXIOMATIC FORMAL SYSTEMS

no models as its choice, is if it was given no models to choose to begin with. φ-

reflection is used to assert that f preserves “reflections” of φ in the models: If φ is

indeterminate in f(X), as well as in Y ⊆ X, then it should stay so in f(Y). The

intuitive justification for reflection is the following. Given some facts, say you cannot

tell whether φ usually holds. (This corresponds to φ,¬φ 6∈ Th(f(X)).) Then say,

given some more facts about the world Y ⊆ X, you cannot tell whether φ strictly

holds (φ,¬φ 6∈ Th(Y)). Then you should still not be able to assert whether φ usually

holds given this new information (φ,¬φ 6∈ Th(f(Y))). 1

f embodies exactly our intuitions hinted at in Chapter 4 in the sense of picking out

the most likely/preferred models. If we define Γ |∼ φ ⇐⇒ f(Mod(Γ)) ⊆ Mod(φ),

and Γ ` φ ⇐⇒ Mod(Γ) ⊆Mod(φ), then we can see how ` determines what can be

determined from classical consequence, while |∼ gives facts that hold in the best or

most likely models of the world.

Notice that we have made no restrictions on L orM, so that these concepts apply

to any language. We conclude this section with some useful representation facts about

the properties described in (5.9) and (5.10).

Proposition 5.3.1 [Properties of |∼ defined by f]. Say Γ |∼ φ ⇐⇒

f(Mod(Γ)) ⊆Mod(φ). Then:

1. |∼ obeys right monotonicity and right conjunction.

2. If f obeys contraction then |∼ obeys inclusion.

3. Say f(X) is defined to be of the form

f(X) =def {x ∈ X | (∀y ∈ X)[R(x, y)]}, (5.12)

for some relation r. Then f satisfies contraction, coherence, and left disjunc-

tion.

1If reflection were true for every φ ∈ L, [van Benthem, 2003] argues f(Y) would have to be
either equal to f(X), or equal to Y , based on an argument that we could set exactly two worlds in
f(X) and Y to have φ true, so that f(Y) must contain one of them.

5.4. EXTENDED AXIOMATIC FORMAL SYSTEMS WITH CHOICE 75

4. Say f(X) is defined to be of the form

f(X) =def {x ∈ X | (∀y ∈ X)[¬y < x]} (5.13)

where < is well-founded and transitive (no infinitely descending chains). Then

|∼ satisfies cautious monotonicity.

Proofs are in Section A.1.

The converse, that the properties of |∼ map to properties of the choice function

f , requires some more restrictions. We can determine properties of f from |∼ only on

those sets of models which are definable, because |∼ only operates in terms of logical

theories. The notion of undefinable sets of models is not new. The class of all finite

models is not definable [Enderton, 1972], as well as the class of all complete partial

and linear orderings [Dickmann, 1985].

Definition 5.3.1 (Definable Sets). Let X be a set of models ofM. X is definable

if there exists a Γ ⊆ L such that X = Mod(Γ).

In other words, X is definable if there is an L-theory whose models are X.

Proposition 5.3.2 [Properties of f defined by |∼]. Let Γ |∼ φ ⇐⇒ f(Mod(Γ)) ⊆

Mod(φ). Then:

1. Say |∼ obeys Inclusion. Then f obeys contraction on the definable subsets of

M.

Proofs are in Section A.2.

5.4 Extended Axiomatic Formal Systems with Choice

We can now define an important subclass of extended axiomatic formal systems, those

whose consequence relation |∼ can be defined in terms of a choice function:

76 CHAPTER 5. EXTENDED AXIOMATIC FORMAL SYSTEMS

Definition 5.4.1 (Extended Axiomatic Formal Systems with Choice).

〈L, `, |∼, Γ〉 is an extended axiomatic formal system with choice if there is a relation

|= ⊆ Struct(L)× L and f : 2Struct(L) → 2Struct(L), such that 2

Γ |∼ φ ⇐⇒ f(Mod(Γ)) ⊆Mod(φ)

and

Γ ` φ ⇐⇒ Mod(Γ) ⊆Mod(φ)

(5.14)

where f satisfies the principles of contraction and coherence.

Remember that Mod and Th are defined from |= by (5.3) and (5.4).

Notice that within this construction, the fact that f satisfies contraction means

〈L, `, |∼, Γ〉 obeys supraclassicality:

Proposition 5.4.1 [Supraclassicality]. Let 〈L, `, |∼, Γ〉 be an extended axiomatic

formal system with choice. Then the relations ` and |∼ obey supraclassicality.

Proof is in Section A.3.

These extended axiomatic formal systems with choice are very useful, because we

can use f as a window into the workings of |∼. This will be very useful when we seek

to combine two extended axiomatic formal systems with choice, and come up with

reasonable semantics for the combination in Chapter 6.

5.5 Definitions of Full Retraction and Full Addi-

tion

We have informally presented definitions of full retraction and full addition in Sec-

tion 4.3. In this section we formally define these concepts in terms of extended

axiomatic formal systems of the form 〈L, `, |∼, Γ〉.

Definition 5.5.1 (Full Retraction). A formula α is fully retractable if we can add

some formula to retract α as a soft truth, as long as it is not a hard truth with respect

to any previous elaboration.

2Struct(L) refers to the class of L-structures.

5.5. DEFINITIONS OF FULL RETRACTION AND FULL ADDITION 77

fully-retractable(α, 〈L, `, |∼, Γ〉) ≡def

(∀Ψ ∈ ΨE)[(Ψ ∪ Γ 6 `α) ∧ (Ψ ∪ Γ 6 `¬α)] =⇒

(∃ψ∅ ∈ ΨE)[(ψ∅ ∪ Ψ ∪ Γ |6∼ α) ∧ (ψ∅ ∪ Ψ ∪ Γ |6∼ ¬α)]

(5.15)

ΨE is a set consisting of all conjunctions of possible elaborative formulas that can

be added to Γ. No matter what other elaborations Ψ have been conjoined to Γ, as

long as they neither entail α nor ¬α, then we can add another formula ψ∅ to ensure

that neither α nor ¬α are soft conclusions.

Call ψ∅(α,Ψ,Γ) the formula which retracts α. We restrict the possible elaborations

Ψ to the set ΨE . Restricting the set of possible elaborative formulas will help us to

prove properties about full retractability later. We can formally define trivial full

retraction, alluded to in Section 4.3.1 as follows:

Definition 5.5.2 (Trivial Full Retraction). Let 〈L, `, |∼, Γ〉 be as above, and

α some L formula. α is trivially fully retractable if:

(∃Ψ ∈ ΨE)[(Ψ ∪ Γ ` α) ∨ (Ψ ∪ Γ ` ¬α)] (5.16)

Now in the context of this powerful kind of retractability, we can formally define

addition of formulas:

Definition 5.5.3 (Full Addition). A formula α is fully addable if we can consis-

tently add a formula to softly conclude α, as long as α is consistent with previous

elaborations. Furthermore, we can always retract α later:

fully-addable(α, 〈L, `, |∼, Γ〉) ≡def

(∀Ψ ∈ ΨE)[Consis(α,Ψ ∪ Γ) =⇒

(∃ψ+ ∈ ΨE)[Consis(ψ+,Ψ ∪ Γ) ∧

(ψ+ ∪ Ψ ∪ Γ |∼ α) ∧

fully-retractable(α, 〈L, `, |∼, ψ+ ∪ Ψ ∪ Γ〉) ∧

Consis(¬α,Ψ ∪ Γ) =⇒ Consis(¬α, ψ+ ∪ Ψ ∪ Γ)]]

(5.17)

78 CHAPTER 5. EXTENDED AXIOMATIC FORMAL SYSTEMS

Remember that Consis(α,Γ) ≡ Γ 6` ¬α.

Trivial full addition is when we cannot always add something to softly conclude

α:

Definition 5.5.4 (Trivial Full Addition). Let 〈L, `, |∼, Γ〉 be as above and α

some L-formula. α is trivially fully addable if:

(∃Ψ ∈ ΨE)[¬Consis(α,Ψ ∪ Γ)], (5.18)

which is the same as

(∃Ψ ∈ ΨE)[Ψ ∪ Γ ` ¬α], (5.19)

meaning that ¬α is a hard fact and therefore it is impossible to add α.

This time call the existentially qualified formula above ψ+(α,Ψ,Γ). We can ascribe

some intuitive meanings to ψ∅(α,Ψ,Γ) and ψ+(α,Ψ,Γ). ψ∅(α,Ψ,Γ) means “forget α

in Ψ ∪ Γ”, since adding it to Ψ ∪ Γ ensures that neither α nor ¬α can be consequently

inferred. ψ+(α,Ψ,Γ) on the other hand, means something like “assume α for now.”

It has less force than “assert α” since we must be able to retract it later.

5.6 Properties of Full Retraction and Addition

Now that we have a formal definition of full retraction and full addition, we can prove

formalisms with these capabilities have some interesting properties.

5.6.1 Elaborations Can Be Sequenced

First we would like to verify that Definitions 5.5.1 and 5.5.3 actually formalize the

property of formulas being retractable and addable after any sequence of elabora-

tions have been conjoined to our axioms. The following two theorems show that full

retractability and addition of formulas is preserved as we conjoin more and more

elaborations from ΨE .

5.6. PROPERTIES OF FULL RETRACTION AND ADDITION 79

If α is fully retractable from an axiomatic system 〈L, `, |∼, Γ〉, it is fully re-

tractable in any elaborated version of 〈L, `, |∼, Γ〉:

Theorem 5.6.1 [Full Retraction Definition is Correct]. Let 〈L, `, |∼, Γ〉 be

an extended axiomatic formal system. Let ψ1, . . . , ψn be any sequence of formulas

from ΨE . Then

fully-retractable(α, 〈L, `, |∼, Γ〉) =⇒

fully-retractable(α, 〈L, `, |∼, ψn ∪ . . . ∪ ψ1 ∪ Γ〉).
(5.20)

Proof is in Section A.4.

If α is fully addable in an axiomatic system 〈L, `, |∼, Γ〉, it is fully addable in

any elaborated version of 〈L, `, |∼, Γ〉:

Theorem 5.6.2 [Full Addition Definition is Correct]. Let 〈L, `, |∼, Γ〉 be an

extended axiomatic formal system. Let ψ1, . . . , ψn be any sequence of formulas from

ΨE . Then

fully-addable(α, 〈L, `, |∼, Γ〉) =⇒

fully-addable(α, 〈L, `, |∼, ψn ∪ . . . ∪ ψ1 ∪ Γ〉).
(5.21)

Proof is in Section A.5.

5.6.2 The Infinitary Requirement of Full Retraction and Ad-

dition

Section 4.5 observes that a system with full retraction and addition will require in-

finitely many models. In this section we formally show that an infinite language (and

therefore infinitely many models) is required for our version of additive elaboration

tolerance.

Theorem 5.6.3 [Full Retraction and Addition Require Infinite Languages].

Let 〈L, `, |∼, Γ〉 be an extended axiomatic formal system with choice which obeys

80 CHAPTER 5. EXTENDED AXIOMATIC FORMAL SYSTEMS

faithfulness and left logical equivalence, and say there is a formula α ∈ L, which is

fully retractable and fully addable in Γ, and not trivially so, for either case.

Then L must have infinitely many formulas.

Proof is in Section A.6.

The essence of this proof is based on alternately retracting and asserting some

formula α ∈ L. If there are not infinitely many elaborative formulas, the retrac-

tion/addition formulas will have to repeat at some point. But then, because of left

logical equivalence our elaborated retraction will be equivalent to the previous ad-

dition, so that either the retraction or addition must fail. Note that left logical

equivalence rules |∼ out as some sort of resource-based consequence relation, such as

those used in linear logics. 3

Corollary 5.6.1 [Nonmonotonicity of |∼]. |∼, for the conditions in Theorem 5.6.3

must be nonmonotonic.

Proof is in Section A.7.

3Linear logics, with their emphasis on resources, could play an intriguing alternate testbed for
studying additive elaboration tolerance.

Chapter 6

Combining Extended Axiomatic

Formal Systems

In this chapter we demonstrate a way to combine an extended axiomatic formal system

with choice S1 = 〈L1, `1, |∼1, Γ1〉 by another system S2 = 〈L2, `2, |∼2, Γ2〉. Our

motivation is to study ways to combine two systems to result in a third one which

shares the elaboration tolerant features of its parents. This combination is a cleaner

way to endow a system with elaboration tolerance, which itself is rather elaboration

tolerant.

Since they are such a clean framework, it is easy to construct simple but intuitive

combinations of extended axiomatic formal systems with choice. [Gabbay, 1996],

[Gabbay, 1992], and other similar works already show how to combine various logical

systems to create new ones. [Gabbay, 1992] shows one way to combine nonmonotonic

systems. In this section we propose a different method that will be utilized in later

chapters. Section 6.1 shows how to construct a mixed language from L1 and L2,

while Section 6.2 shows how to make sense of it all. Finally Section 6.3 shows how

the updated hard and soft consequence relations `1,2 and |∼1,2 are constructed.

81

82 CHAPTER 6. COMBINING EXTENDED AXIOMATIC FORMAL SYSTEMS

6.1 Combining Languages

Let S1 = 〈L1, `1, |∼1, Γ1〉 and S2 = 〈L2, `2, |∼2, Γ2〉 be two extended axiomatic

systems with choice. Let f be the choice function for |∼1, and g that for |∼2. Assume

that L1 and L2 are at most first-order. If there are quantifiers in the language,

distinguish between quantification over the two structures as ∀1 and ∀2. We would

like to create some kind of combined system S2 · S1 = 〈L1,2, `1,2, |∼1,2, Γ1,2〉, which

weaves the semantics of both systems.

First of all, we create a mixed language L1,2:

L1,2 =def Closure(L1 ∪ L2), (6.1)

where Closure combines the symbols of L1 and L2 under boolean operators from

either language (if there are any). The one restriction is that if the languages are first-

order with equality, then no “sharing” occurs of terms with predicates. For example,

we do not allow mixed atoms of the form t1 = t2 or P (t1, t2), where t1 is a term of L1

and t2 a term of L2. The two languages are assumed to be mutually exclusive. 1

Given this language L1,2, our new set of axioms Γ1,2 can be some combination of

Γ1 and Γ2, along with new formulas of L1,2.

6.2 Combining Semantics

In order to describe how `1,2 and |∼1,2 work, we need to ascertain satisfaction in

this mixed language L1,2. For this we develop Cartesian products of structures; if

Struct(L1) and Struct(L2) are the classes of L1/L2-structures, then our new set of

L1,2-structures is just the cross-product Struct(L1)×Struct(L2). We can then define

satisfaction of L1,2 structures on L1,2 formulas:

Definition 6.2.1 (Satisfaction (|=1,2) of L1,2-structures). Let φ be a formula of

L1,2 and (m1,m2) ∈ Struct(L1)× Struct(L2), so that m1 is an L1-structure and m2

1If we wanted to truly mix the languages, say by allowing non-logical operators from L1 to
operate over formulas of L2 and vice versa, we would have to employ the more complicated fi-

bred semantics described in various publications including [Gabbay, 1996], [Gabbay, 1992] and
[Gabbay and Nossum, 1997]. This simpler kind of mix is sufficient for our purposes.

6.2. COMBINING SEMANTICS 83

an L2-structure. Call |=1 the satisfaction relation for S1 and |=2 the one for S2. We

define |=1,2 ⊆ (Struct(L1)× Struct(L2)) × L1,2 as:

(m1,m2) |=1,2 φ ≡def

mi |=i φ φ ∈ Li

[(m1,m2) |=i α] # [(m1,m2) |=i β] φ = α # β

(# a boolean connective)

(∀a ∈ |mi|)[(m1,m2) |=i ψ[x/a]] φ = (∀ix)[ψ]

(6.2)

Essentially, each model decides the truth of its own Li-formula, broken down by

any boolean connectives. ∀i refers to quantification in mi’s domain, so that the two

universes of the two models are kept separate, and quantification in each language

still ranges over the intended universes.

The index on the satisfaction relations is simply to remind us of that we are

operating in system i.

With a definition for |=1,2 in hand, we can construct definitions of Mod1,2 and

Th1,2 a lá (5.3) and (5.4).

Now we extend our choice functions f and g from the domains of Struct(L1) and

Struct(L2), respectively, to Struct(L1) × Struct(L2). To do so, we first introduce

some simplifying notation:

Definition 6.2.2 ([A]` and [A]r).

[A]` =def {a | (a, b) ∈ A}

[A]r =def {b | (a, b) ∈ A}
(6.3)

[·]` and [·]r is just shorthand for stripping off certain sides of the tuples in A. It is

like the project relation used in relational databases.

Definition 6.2.3 (Extending Choice Functions). Say f : 2Struct(L1) → 2Struct(L1)

and g : 2Struct(L2) → 2Struct(L2). We can construct extended versions f ∗ and g∗ to

cover the domain 2Struct(L1)×Struct(L2) into 2Struct(L1)×Struct(L2), as shown in (6.4). Say

W ⊆ Struct(L1)× Struct(L2):

84 CHAPTER 6. COMBINING EXTENDED AXIOMATIC FORMAL SYSTEMS

f ∗(W) =def {(m1,m2) ∈ W | m1 ∈ f([W]`)}

g∗(W) =def {(m1,m2) ∈ W | m2 ∈ g([W]r)}
(6.4)

Note that we cannot assume f ∗ and g∗ commute. But there is some interesting

structure present in these choice functions. We include some relevant properties of

our extensions f ∗ and g∗ in Proposition 6.2.1.

Proposition 6.2.1 [Consequences of f ∗ and g∗]. Let f ∗ and g∗ be as in Defini-

tion 6.2.3. then:

1. f ∗ and g∗ satisfy contraction.

2. If f satisfies coherence, so does f ∗. The same goes for g∗.

3. f ∗ satisfies right interchangeability, defined as:

(a, b) ∈ f ∗(w) ∧ (a, c) ∈ w =⇒ (a, c) ∈ f ∗(w). (6.5)

g∗ satisfies left interchangeability.

4. If f satisfies faithfulness, so does f ∗.

5. If f satisfies φ-reflection for φ ∈ L1, so does f ∗.

Proof is in Section A.8.

6.3 The Combined System S1,2 = S2 · S1

With these functions, we can now finally define our consequence relations `1,2 ⊆

2L1,2 × L1,2 and |∼1,2 ⊆ 2L1,2 × L1,2:

A `1,2 φ ≡def f ∗(Mod(A)) ⊆Mod(φ)

A |∼1,2 φ ≡def f ∗(g∗(Mod(A))) ⊆Mod(φ)
(6.6)

6.3. THE COMBINED SYSTEM S1,2 = S2 · S1 85

Notice that we have defined our hard truths `1,2 in our new system S1,2 =

〈L1,2, `1,2, |∼1,2, Γ1,2〉 as the soft consequence relation |∼1 of S1, while |∼1,2 is the

composition of f ∗ and g∗. Our “hard” reasoning in S1,2 involves looking at what holds

in all f ∗-preferred models. On the other hand, default reasoning corresponds first to

seeing what g∗ deems more likely, and then based on that, using f ∗ to pick out the

worlds deemed likeliest of those. The idea is that g∗ constructs a set of soft truths

relative to the hard ones of f .

Earlier we motivated our use of ` versus |∼ in terms of ` being monotonic while

|∼ was not. For the combined system S1,2 whether `1,2 is monotonic, will depend on

f and g. For our purposes it will be enough that the consequences of |∼1,2 include

those of `1,2; that is that |∼1,2 is soft relative to `1,2.

Chapter 7

The Combined System S1,Ab

In this chapter we show how to formally endow an arbitrary extended axiomatic

system with choice S1 = 〈L1, `1, |∼1, Γ1〉 with full retraction and full addition for

any formula in its language L1. We do so by combining S1 with a special system

SAb = 〈LAb, `Ab, |∼Ab, ΓAb〉 that we describe in this chapter. This combination will

correspond to our informal augmentation of LProp, described back in Section 4.4,

except that we can do this for arbitrary extended axiomatic formal systems with

choice.

This chapter has three sections. Section 7.1 describes some constraints we put

on S1 so that the combination is well-defined. A description of SAb is provided in

Section 7.2. In final Section 7.3, we show what the combination S1,Ab = SAb ·S1 looks

like.

7.1 Constraints on S1

We need to put one restriction on S1 so that it successfully combines with SAb to have

full retraction and full addition. This restriction is that the logical symbol ⊥ 6∈ Γ1.

Γ1 can still be inconsistent, say by containing instances of P and ¬P , but it cannot

contain ⊥. Also, L1 and LAb must be disjoint, except possibly for non-logical boolean

symbols. Call f the choice function associated with S1.

Notice that this restriction on S1 is purely syntactic, and does not interfere with

86

7.2. PROPERTIES OF SAB 87

or diminish the expressive content of S1.

7.2 Properties of SAb

There is considerably much more to say about SAb. SAb’s sole purpose is to endow S1

with full retractability and full addition. It can be thought of as a “scaffolding” put

around 〈L1, `1, |∼1, Γ1〉 to give it full retraction and full addition, while preserving

the inferential content of 〈L1, `1, |∼1, Γ1〉.

SAb is defined as follows:

1. LAb = Param ∪ {Ab,<}. Param is a set consisting of countably infinitely

many constant symbols, while Ab is a unary relation, and < a binary one.

2. An LAb-structure m2 of LAb is a function such that |m2| is a non-empty set, and

m2 maps each symbol of LAb to its appropriate element:

(a) For each ` ∈ Param, `m2 ∈ |m2|

(b) <m2⊆ |m2|
2

(c) Abm2 ⊆ |m2|

This is just the standard definition of L-structures.

3. The satisfaction relation |=Ab is the usual classical one for first-order languages.

4. |∼Ab operates using a particular choice function g. We do not care about `Ab,

as it will not be used in the combination. g selects the Ab-minimal models from

a set W :

g(W) =def {x ∈ W | (∀y ∈ W)[¬y <Ab x]}, (7.1)

where W is a set of LAb-structures. Proposition 5.3.1 shows that g satisfies

coherence and contraction, so that so does g∗ by Proposition 6.2.1.

<Ab is the usual version of Ab-minimality:

88 CHAPTER 7. THE COMBINED SYSTEM S1,AB

m <Ab n ≡def |m| = |n| ∧ <
m=<n ∧(∀` ∈ Param)[`m = `n] ∧ Abm ⊂ Abn

m ≤Ab n ≡def |m| = |n| ∧ <
m=<n ∧(∀` ∈ Param)[`m = `n] ∧ Abm ⊆ Abn

(7.2)

5. ΓAb is the complete collection of all literals of the form ±`i < `j and ±`i = `j,

for each `i, `j ∈ Param. ΓAb formalizes < as a total order on Param. It also

asserts that the infinitely many constants in Param are all distinct.

7.3 A Summary of S1,Ab

Now that we have defined our LAb, we can describe the combined system S1,Ab con-

structed according to Chapter 6, in all its gory detail:

Mod1,Ab(φ) = {(m1,m2) ∈ Struct(L1)× Struct(LAb) | (m1,m2) |=1,Ab φ}

Th1,Ab(W) = {φ ∈ L1,Ab | (∀(m1,m2) ∈ W)[(m1,m2) |=1,Ab φ]}

L1,Ab = Closure(L1 ∪ LAb)

Γ `1,Ab φ ≡ f ∗(Mod1,Ab(Γ)) ⊆Mod1,Ab(φ)

Γ |∼1,Ab φ ≡ f ∗(g∗(Mod1,Ab(Γ))) ⊆Mod1,Ab(φ)

f ∗(g∗(W)) = {(m1,m2) ∈ g
∗(W) | m1 ∈ f([g∗(W)]`)}

g∗(W) = {(m1,m2) ∈ W | m2 ∈ g([W]r)}

= {(m1,m2) ∈ W | (∀(n1, n2) ∈ W)[¬(n2 <Ab m2)]}

Γ1,Ab(Υ) = Υ ∪ AB(Γ1 \Υ) ∪ ΓAb

(7.3)

We have labeled our semantic functions Mod1,Ab and Th1,Ab to stress the fact that

they employ the satisfaction relation |=1,Ab over the class of L1,Ab-structures. Later

on we leave this notation out to reduce clutter; it will be obvious from the context

which satisfaction relation is being used. `1,Ab ascertains truth in all f ∗ worlds, while

|∼1,Ab looks at the f ∗-preferred worlds that are Ab-minimal.

The one construction we have not yet explained is the last one in (7.3). The

7.3. A SUMMARY OF S1,AB 89

function AB abnormalizes its argument. If Γ is an L1-theory,

AB(Γ) =def {Ab(σ(γ)) ∨ γ | γ ∈ Γ} (7.4)

What AB does is essentially make the formulas in Γ defeasible by attaching a

disjunct Ab(label) to each formula. σ is used to map each formula of L1 to some

symbol of Param. 1 The construction in (7.3) allows us to make a distinction in Γ1,Ab

between the hard and soft truths of Γ1. Υ is the subset of Γ1 meant to represent the

hard truths, and are added as is to be a part of Γ1,Ab. The remainder of Γ1, Γ1 \Υ is

considered the soft part, and is abnormalized by AB.

Our combined theory Γ1,Ab(Υ) = Υ ∪ AB(Γ1 \ Υ) ∪ ΓAb, can thus be described

as some set of “pure” L1 formulas from Γ1, combined with the remaining formulas

of Γ1 which have been “labeled” with Abs, combined with the complete theory of <

and = on Param in ΓAb.

One final note: the assertion Consis(α,Γ) has a special interpretation in this

context:

Consis(α,Γ) ≡def Γ 6`1,Ab ¬α

⇐⇒ f ∗(Mod(Γ)) 6⊆Mod(¬α)

⇐⇒ (∃(m1,m2) ∈ f
∗(Mod(Γ)))[(m1,m2) |=1,Ab α]

(7.5)

The mission of Chapter 8 is to show that this combined system S1,Ab satisfies full

retraction and full addition for formulas of L1. In other words, we can continually

add sentences to the axioms of S1,Ab (Γ1,Ab(Υ)) to retract and add formulas of L1

regardless of whatever has already been added, of course provided these formulas do

not directly conflict with any hard truths of S1,Ab.

For the rest of this thesis, assume that S1 = 〈L1, `1, |∼1, Γ1〉,

SAb = 〈LAb, `Ab, |∼Ab, ΓAb〉, and S1,Ab = 〈L1,Ab, `1,Ab, |∼1,Ab, Γ1,Ab〉 are as de-

scribed above.

1For now, we treat σ as some arbitrary seeding function. Future research will explore various
mappings σ and how they can help realize some further interesting structure within this framework.
One example of some ideas on how to seed our formulas is explored in Section 11.4.

Chapter 8

S1,Ab Has Full Retraction and

Addition

This chapter shows how the system S1,Ab described in Chapter 7 endows S1 with

full retraction and full addition for its formulas. The result is impressive, not only

because we show how to implement additive elaboration tolerance for an arbitrary

system S1, but because the formulas which we have to add in order to retract and

add other formulas are so simple. It is also reassuring to see that systems do exist

with the properties of full retraction and addition, since the notions at first appear

to be paradoxical.

We first explore the class of elaborative formulas ΨE used in our construction in

Section 8.1. Section 8.2 then gives some key lemmas used to show that our interpre-

tations of the Ab labels are flexible in various ways. We have to be careful that our

choice functions (particularly g∗) do not return the empty set of models; Section 8.3

demonstrates how we manage to avoid these situations. We present the syntactic

conditions under which full retractability works in Section 8.4, and then show full

retraction and addition theorems for any L1-formulas in Section 8.5.

90

8.1. THE CLASS OF ELABORATIVE FORMULAS ΨE 91

8.1 The Class of Elaborative Formulas ΨE

An examination of the definitions of full retraction (Definition 5.5.1) and full addition

(Definition 5.5.3) shows that whether a formula α is fully retractable and fully addable

depends very sensitively on ΨE , the class of elaborations we are allowed to apply to

our representation. The reason is that we should be able to retract and add α by

adding a particular formula, no matter what intervening elaborations from ΨE have

already been added to our representation. This makes our proofs of full retraction and

addition difficult, because we have to assume arbitrary formulas from ΨE may be a

part of our representation. Thus, we want ΨE to be as simple and small as possible.

But on the other hand, ΨE has to be expressive enough to contain our elaborative

formulas ψ∅(α) and ψ+(α) for as many α as possible. Proving full retractability and

addition boils down to solving a kind of fixed point equation for ΨE .

The solution to this quandary is to “cut” this recursion by specifying a certain

syntactic form for the formulas in ΨE . It turns out that given this syntactic form, our

theorems proceed without any problem. Elab+(L1,LAb) describes this special class

of formulas:

Definition 8.1.1 (Elab+(L1,LAb)). Let L1 and LAb be the languages as described

in Chapter 7. Elab+(L1,LAb) is the set of all finite sentences of the form:

φ ∧
∧

iAb(`i) ∨ φi ∧
∧

j(∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)],

(8.1)

where `i, `j ∈ Param, φ, φi ∈ L1, φi 6=⊥, and ∀Ab refers to quantification over the

domain of LAb-structures.

We see that the elaborative formulas ψ∅ and ψ+ used in the simple system in

Section 4.4 are represented in Elab+(L1,LAb). It is also easy to see that formulas in

Elab+(L1,LAb) are closed under conjunction.

92 CHAPTER 8. S1,AB HAS FULL RETRACTION AND ADDITION

8.2 Retraction of Formulas and Labels

In this section we present two key lemmas that give us insight into the nature of the

L1,Ab-models of Γ1,Ab, even in the presence of any formula Ψ from Elab+(L1,LAb).

The Upwardly Free Ab Lemma shows we can find L1,Ab-models of Ψ ∪ Γ1,Ab where the

extension of Ab is almost arbitrary. More specifically, if (m1,m2) is a model of Γ1,Ab,

we can arbitrarily tinker with m2’s extension of Ab over labels in Param greater than

those mentioned in Ψ ∪ Γ1,Ab, and still have a model of Ψ ∪ Γ1,Ab. In some sense,

this should be obvious – if the labels from Param are not mentioned in our axioms

then clearly they cannot influence their truth, and are in some sense “free.”

On the other hand, the Downwardly Free Ab Lemma shows we can also tinker a

bit with the labels that have been mentioned. Given a model (m1,m2) of Γ1,Ab, we

can force Ab for additional elements of Param less than or equal to those mentioned

in Γ1,Ab, and still have a model of Γ1,Ab.

The Upwardly Free Ab Lemma is crucial for showing full retractability, as it shows

that not only have we an infinite supply of unused labels from Param to label our

elaborations, but that these labels can later be consistently set to retract any of our

statements, particularly those that might [logically] conflict with a later elaboration.

The Downwardly Free Ab Lemma is important to the proof of full addition because

it shows that we can have models even when our extension of labels mentioned are

all contained in Ab.

Upwardly Free Ab Lemma. Let Φ be any L1-theory and Ψ ∈ Elab+(L1,LAb). Say

we have an L1,Ab-structure (m1,m2) such that (m1,m2) |=1,Ab Φ ∪ Ψ ∪ ΓAb, and call

`max the >-highest symbol of Param mentioned in Ψ.

Call Λmax = {` ∈ Param | ` > `max ∈ ΓAb}. Let Λ be a arbitrary subset of Λmax.

Then there is a model (m1,m
∗
2) |=1,Ab Φ ∪ Ψ ∪ ΓAb where m∗

2 looks just like m2 except

that Abm
∗

2 = (Abm2 \ Λmax) ∪ Λ.

Proof is in Section A.9.

In other words, we can assign the remaining parameters>-than those mentioned in

Ψ arbitrarily to m2’s extension of Ab without affecting its satisfaction of Φ ∪ Ψ ∪ ΓAb.

8.3. NON-EMPTY CHOICE FUNCTIONS 93

Downwardly Free Ab Lemma. Let Φ be any L1-theory and Ψ ∈ Elab+(L1,LAb).

Say we have an L1,Ab-structure (m1,m2) such that (m1,m2) |=1,Ab Φ ∪ Ψ ∪ ΓAb. Call

`max the >-highest symbol of Param mentioned in Ψ.

Let n2 be any LAb-model of ΓAb, such that {a ∈ |n2| | a ≤ `max} ⊆ Abn2. (Note

that this leaves n2 unspecified for elements >-than `max.) Then

(m1, n2) |=1,Ab Φ ∪ Ψ ∪ ΓAb.

Proof is in Section A.10.

8.3 Non-Empty Choice Functions

One problem with choice functions such as g∗/g, which picks out the models with

minimal Ab extent, is that there could be no such minimal models, so that g∗(W) = ∅,

even for a consistent set of formulas.1

A choice function g which returns the empty set on a non-empty input would

wreck our construction. Given the complexity of our scaffolding it is not clear that g

will tolerate this constraint, so we prove that it in fact does:

Lemma 8.3.1 [Every <Ab chain ends]. Let Ψ ∈ Elab+(L1,LAb) and Φ an L1-

theory. Say (m0
1,m

0
2) |=1,Ab Ψ ∪ Φ ∪ ΓAb.

Then there exists a (n1, n2) |=1,Ab Ψ ∪ Φ ∪ ΓAb which is ≤Ab-minimal amongst

Mod1,Ab(Ψ ∪ Φ ∪ ΓAb) and n2 ≤Ab m
0
2.

Proof is in Section A.11

Corollary 8.3.1 [g∗ has Minimal Elements]. Say (m0
1,m

0
2) |=1,Ab Ψ ∪ Φ ∪ ΓAb.

Then there exists a (n1, n2) ∈ g
∗(Mod(Ψ ∪ Φ ∪ ΓAb)) such that n2 ≤Ab m

0
2.

1[Etherington et al., 1985] gives an example for circumscription where the theory is consistent,
but there are no P -minimal models:

(∃x)[P (x) ∧ (∀y)[P (y) =⇒ x 6= s(y)]]
(∀x)[P (x) =⇒ P (s(x))]
(∀x, y)[s(x) = s(y) =⇒ x = y]

(8.2)

Now, (8.2) clearly has a model, M, the most obvious one where PM = {a, sM(a), sM(sM(a)), . . .}.
A model M

′ with a smaller extension of P would be PM
′

= {sM
′

(a), sM
′

(sM
′

(a)), . . .}, and smaller
still would be PM

′′

= {sM
′′

(sM
′′

(a)), . . .}, and so forth. Since we have infinitely descending chains on
Ab-minimal structures, we have no P -minimal models, resulting in an inconsistent circumscription.

94 CHAPTER 8. S1,AB HAS FULL RETRACTION AND ADDITION

This property is called smoothness in some circles. If an element is not minimal,

it is less than some minimal element.

Proof. This is just a consequence of the definition of g∗ and Lemma 8.3.1.

Corollary 8.3.2 [g∗ is Non-Empty]. Let Ψ ∈ Elab+(L1,LAb) and Φ a consistent

L1-theory. Furthermore, if Ψ contains a conjunct with a pure L1-formula (Ψ ≡

φ ∧
∧

iAb(`i) ∨ φi ∧
∧

j(∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)]), Φ ∪ φ is consistent.

Then g∗(Mod(Ψ ∪ Φ ∪ ΓAb)) 6= ∅.

Proof is in Section A.12.

8.4 Conditions for Full Retractability

With the help of the above lemmas, we can now give the syntactic conditions under

which our S1,Ab is fully retractable, for any L1-formula α.

Full Retractability Lemma. Let ΨE = Elab+(L1,LAb), τ an element of

Elab+(L1,LAb), Φ a consistent L1-theory, and α any L1-formula. Say f , the choice

function underlying S1, satisfies contraction, coherence, faithfulness, and α-reflection.

Then fully-retractable(α, 〈L1,Ab, `1,Ab, |∼1,Ab, τ ∪ Φ ∪ ΓAb〉).

Proof is in Section A.14.

8.5 Full Retraction and Addition Theorems

We finally can conclude that our construction S1,Ab was not in vain, that in fact we

can fully retract and add formulas simply by adding the appropriate formula.

Full Retraction of S1,Ab Theorem. Let Γ1 be any L1-theory with Υ ⊆ Γ1 a consis-

tent subset such that Γ1 \ Υ is finite. Set ΨE be Elab+(L1,LAb). Let f be the choice

function underlying |∼1.

Say f satisfies contraction, coherence, faithfulness and α-reflection for some L1-

formula α.

Then we have fully-retractable(α, 〈L1,Ab, `1,Ab, |∼1,Ab, Γ1,Ab(Υ)〉).

8.5. FULL RETRACTION AND ADDITION THEOREMS 95

Proof. By the Full Retractability Lemma, is enough to show that Γ1,Ab(Υ) is of the

same form as τ ∪ Φ ∪ ΓAb, where τ ∈ Elab+(L1,LAb) and Φ ∈ L1. Recall from (7.3),

Γ1,Ab(Υ) = Υ ∪ AB(Γ1 \Υ) ∪ ΓAb. Υ ∈ L1 and AB(Γ1 \Υ) being finite, is a member

of Elab+(L1,LAb) so we are done.

Full Addition of S1,Ab Theorem. Let Γ1 be any L1-theory with Υ ⊆ Γ1 a consistent

subset such that Γ1 \ Υ is finite. Set ΨE to be Elab+(L1,LAb). Let f be the choice

function underlying |∼1.

Say f satisfies contraction, coherence, faithfulness, and α-reflection for some L1-

formula α. Then we have fully-addable(α, 〈L1,Ab, `1,Ab, |∼1,Ab, Γ1,Ab(Υ)〉).

Proof is in Section A.15.

Chapter 9

Properties of S1,Ab

Chapter 8 is heavily concerned with showing how and when an arbitrary extended

axiomatic formal system with choice can be endowed with the properties of full re-

traction and full addition. We explore in this chapter other aspects of the system

S1,Ab that we have constructed.

We first provide some additional motivating examples for how our construction

works in Section 9.1. In Section 9.2 we provide various theorems showing that con-

sistency is preserved from S1 to S1,Ab, and that the truths are preserved as well.

Section 9.3 briefly explores the kinds of systems that can be augmented in this way;

first-order logic is one of them.

We move on to more intriguing observations in Section 9.4. The syntax of the

axioms in our original system S1 actually influence what are the preferred worlds.

This means that one can control the preference function f ∗ · g∗, which operates on

the semantic level, on the syntactic level. We provide some examples of how this is

accomplished. The values of parameters can also be changed additively, provided the

syntax of the theory follows some rules. An example is sketched out in Section 9.5.

We show in Section 9.6 that our elaborated theory can be compacted to a natural

form, which indicates that we may be able to model epistemic entrenchments in our

formalisms in an elegant fashion. Finally, we conclude with a discussion of systems

related to S1,Ab in Section 9.7.

96

9.1. FULL RETRACTION AND ADDITION IN ACTION 97

9.1 Full Retraction and Addition in Action

Section 4.4 already gives some simple examples to show how our ψ∅(α) and ψ+(α)

work in propositional logic. This section gives some more examples when there are

hard truths present.

Say L1 = {α, β}, `1 = |∼1 = `, the classical inference relation. Γ1 = {α, α =⇒

β}. Say Param = N and < the usual ordering on the numbers.

Example 9.1.1. Let us alter Example 4.4.1, this time letting α =⇒ β be a hard

truth. Then our original set of axioms Γ1,Ab(α =⇒ β) is

Ab(1) ∨ α

α =⇒ β
(9.1)

Again, in all Ab-minimal models, α and β hold. Now consider adding our ψ∅ =

(Ab(3)∨ β) ∧ (Ab(4)∨¬β) again. This time, our Ab-minimal models can be divided

into two classes:

Ab(3) ∧ α ∧ β

Ab(1) ∧ Ab(2) ∧ ¬α ∧ ¬β
(9.2)

Again, we notice β has been retracted from our conclusions. Also, notice that in

both of these classes the hard fact α =⇒ β still holds.

Example 9.1.2. We re-examine how Example 4.4.2 works in the presence of hard

facts. For example, say that our original theory consisted of

α

Ab(2) ∨ β

Ab(3) ∨ (α ∧ β =⇒ γ),

(9.3)

where we are certain that α holds, but nothing else. Then when we add our

ψ+(¬γ) we end up with

98 CHAPTER 9. PROPERTIES OF S1,AB

α

Ab(2) ∨ β

Ab(3) ∨ (α ∧ β =⇒ γ)

Ab(4) ∨ ¬γ

(∀Ab x)[Ab(4) ∧ x < 4 =⇒ Ab(x)]

(9.4)

which has Ab-minimal models:

Ab(2) ∧ α¬β ∧ ¬γ

Ab(3) ∧ α ∧ β ∧ ¬γ
(9.5)

In this case α is not allowed to be retracted, and we only have two possibilities,

we retract β by asserting Ab(2) or we retract α ∧ β =⇒ γ via Ab(3).

9.2 Our Construction S1,Ab is Sound

We must show that our construction S1,Ab is sound – that is, any hard truths that

held in S1 before the conglomeration with SAb still hold in the new system. We show

the same for soft facts. First we demonstrate a theorem about the consistency of

S1,Ab:

Theorem 9.2.1 [Satisfiability is Preserved]. Let S1 = 〈L1, `1, |∼1, Γ1〉 be an

extended axiomatic formal system with choice. Say that Υ ⊆ Γ1 is satisfiable. Then

the combined system S1,Ab has an L1,Ab-model.

Proof is in Section A.16.

Note that Γ1 could be unsatisfiable to begin with, but the transformation to S1,Ab

will still provide models as long as the set of hard truths Υ ⊆ Γ1 is consistent.

Theorem 9.2.2 [Hard Truths are Preserved by Hard Consequence]. Let α

be an L1-formula and say Υ ⊆ Γ1 and Υ `1 α. Then Γ1,Ab(Υ) `1,Ab α.

Proof is in Section A.17.

Lemma 9.2.1 [g∗’s Behavior when Γ1 is satisfiable.]. Say Γ1 is satisfiable. Then

9.3. SYSTEMS WITH FULL RETRACTION AND ADDITION 99

(m1,m2) ∈ g
∗(Mod(Γ1,Ab(Υ))) ⇐⇒ m1 |=1 Γ1 ∧

Abm2 = ∅ ∧

m2 |=2 ΓAb

(9.6)

Proof is in Section A.18.

Theorem 9.2.3 [Preservation of Soft Formulas]. Let α be an L1-formula. Say

Γ1 is satisfiable and that Γ1 |∼1 α. Then Γ1,Ab(Υ) |∼1,Ab α.

Proof is in Section A.19.

9.3 Systems with Full Retraction and Addition

The Full Retraction Theorem and the Full Addition Theorem show that our construc-

tion S1,Ab will endow any extended axiomatic formal system with choice S1 with full

retraction and addition for an L1-formula α if it obeys the following properties:

1. f satisfies coherence, contraction, faithfulness and α-reflection.

2. Υ ⊆ Γ1 is consistent.

3. Γ1 \Υ is finite.

In this framework, this means any first order language L1 will be usable, and in

fact, any first order language with |∼1 defined classically (f is the identity) will be

fully retractable/addable for any formula of L1!

Corollary 9.3.1 [Classical FOL Has Full Retraction and Addition]. Let Γ1 be

a theory in some first-order language L1. Say Υ ⊆ Γ1 is some consistent subset such

that Γ1 \ Υ is finite. Then the system 〈L1,Ab, `1,Ab, |∼1,Ab, Γ1,Ab(Υ)〉 where f = 1

has full retraction and full addition, for any α ∈ L1.

Proof is in Section A.20.

In fact, we can generalize these results to any preferential semantics which are

well-founded and satisfy α-reflection.

100 CHAPTER 9. PROPERTIES OF S1,AB

Corollary 9.3.2 [Preferential Semantics and Full Retraction and Addition].

Let 〈L1, `1, |∼1, Γ1(Υ)〉 be an extended axiomatic formal system with choice function

f . Say f(X) =def {w ∈ X | (∀x ∈ X)[x ≤ w =⇒ x = w]} for some well-founded

relation ≤. Furthermore assume that f satisfies α-reflection.

Say Υ ⊆ Γ1 is some consistent subset such that Γ1 \Υ is finite. Then the system

〈L1,Ab, `1,Ab, |∼1,Ab, Γ1,Ab(Υ)〉 has full retraction and full addition for α.

Proof is in Section A.21.

9.4 The Power of Syntax in S1,Ab

In Chapter 8, we showed how the combined system 〈L1,Ab, `1,Ab, |∼1,Ab, Γ1,Ab(Υ)〉

can have full retraction and addition for all formulas in the original language L1.

What we did not address is how to decide how to write the axioms of Γ1,Ab(Υ). This

is important, as the syntax of Γ1,Ab(Υ), particularly, the structure of Γ1 and how we

assign labels to its formulas, can give rise to entirely different semantics in terms of

S1,Ab. This is a very important feature of our formalism, as it allows us to express

preferences, usually accomplished only on the model-theoretic level, within our theory.

We illustrate how syntax affects semantics in the next few examples:

Example 9.4.1 (Conjunctions). Let L1 = {α, β}. Consider two theories Γ1 =

{α, β} versus Γ′
1 = {α ∧ β}. Let Υ be empty in both cases so that our “scaffolded”

theories are Γ1,Ab = {Ab(1) ∨ α,Ab(2) ∨ β} and Γ′
1,Ab = {Ab(1) ∨ (α ∧ β)}. Say

we want to add the fact that ¬β holds. Our elaborative formula for either case is

ψ+(¬β) = (Ab(3) ∨ ¬β) ∧ (∀Ab x)[Ab(3) =⇒ x < 3 =⇒ Ab(x)]. Adding this

elaboration results in the two theories:

9.4. THE POWER OF SYNTAX IN S1,AB 101

ψ+(¬β) ∪ Γ1,Ab ≡ Ab(1) ∨ α ∧

Ab(2) ∨ β ∧

Ab(3) ∨ ¬β ∧

(∀Ab x)[Ab(3) =⇒ x < 3 =⇒ Ab(x)]

ψ+(¬β) ∪ Γ′
1,Ab ≡ Ab(1) ∨ (α ∧ β) ∧

Ab(3) ∨ ¬β ∧

(∀Ab x)[Ab(3) =⇒ x < 3 =⇒ Ab(x)]

(9.7)

We see that the preferred models of ψ+(¬β) ∪ Γ1,Ab are {α,¬β}, while those of

ψ+(¬β) ∪ Γ′
1,Ab include both {α,¬β} and {¬α,¬β} – while α was independent of

adding the elaboration that ¬β in Γ1,Ab, it was also retracted as a side-effect in Γ′
1,Ab.

Syntactically, this is obvious because in Γ1,Ab we assign each formula its own label,

while in Γ′
1,Ab we force α and β to share the same label. Intuitively, each Ab label

names a particular formula, so that when the label is retracted, the entire associated

formula must be retracted.

We will have more to say about how the Ab labels partially reify our formulas,

and act as contexts on them [McIlraith, 2003] later in Section 11.4. Let us look at

another example first:

Example 9.4.2 (Lightning and Thunder). This example is taken from

[Subramanian and Genesereth, 1987]. Let L1 = {`, t}, where ` means “lightning is

observed,” while t is “thunder is observed.”

Consider two separate, but equivalent theories, Γ1 = {`, t} versus Γ′
1 = {`, ` =⇒

t}. Γ1 represents two independent observations about lightning and thunder. Γ′
1 on

the other hand, contains the fact that lightning was observed, but instead expresses

the fact that lightning causes thunder. These theories are semantically equivalent,

although they represent some different intuitions. It turns out our abnormalization

operation is sensitive to this difference:

Say Γ1,Ab = {Ab(1) ∨ `, Ab(2) ∨ t}, while Γ′
1,Ab = {Ab(1) ∨ `, Ab(2) ∨ (` =⇒ t)}.

Now say we retract the fact that we observed lightning. This corresponds to the

102 CHAPTER 9. PROPERTIES OF S1,AB

elaborative formula ψ∅(`) = (Ab(3) ∨ `) ∧ (Ab(4) ∨ ¬`). Hence our updated theories

are:

ψ∅(`) ∪ Γ1,Ab ≡ Ab(1) ∨ ` ∧

Ab(2) ∨ t ∧

Ab(3) ∨ ` ∧

Ab(4) ∨ ¬`

ψ∅(`) ∪ Γ′
1,Ab ≡ Ab(1) ∨ ` ∧

Ab(2) ∨ (` =⇒ t) ∧

Ab(3) ∨ ` ∧

Ab(4) ∨ ¬`

(9.8)

In the first case, the preferred models of ψ∅(`) ∪ Γ1,Ab are {`, t} and {¬`, t} – t

is independent of `, since they are written to be separate observations. For the more

causal ψ∅(`) ∪ Γ′
1,Ab we get three models: {`, t}, {¬`, t}, and {¬`,¬t} – in this causal

theory, after retracting lightning, we are not even sure that thunder holds anymore.

This exercise shows that how we frame our theories is important, as it will affect

how other facts may change in the presence of elaborations.

9.5 Changing Parameters

We can change the values of parameters in SAb, simply by adding the proper formula.

Example 9.5.1 shows how this works, as well as how the syntax of the original theory

is important. In particular, for this kind of elaboration to be successful, we must

follow the design principles alluded to in Section 3.4.

Example 9.5.1 (Parameters). Adapted from [Parmar, 2002]: Assume |∼ has an

associated choice function f , and obeys inclusion and right conjunction. Let M be

some parameter and m some value it can take. Say we have some set of axioms

Γ[M] with various occurrences of the formula/term α[M]. Contrast this to the “in-

stantiated” version ∆[M], which looks just like Γ[M] but contains α[m] instead of

α[M].

9.5. CHANGING PARAMETERS 103

Γ[M] |∼ M = m ∆[M] |∼ M = m, (9.9)

We will show that these theories act differently in the presence of a parameter

change. Say we have some n 6= m and that both theories have full addition. Fur-

ther assume that Consis(M = n,Γ[M]) as well as Consis(M = n,∆[M]). By full

addition, we know we have ψ+(M = n,Γ[M]) and ψ+(M = n,∆[M]) such that:

ψ+(M = n,Γ[M]) ∪ Γ[M] |∼ M = n

ψ+(M = n,∆[M]) ∪ ∆[M] |∼ M = n
(9.10)

Now say γ[α[M]] (respectively γ[α[m]]) is some member of Γ[M] (∆[M]). Since

|∼ obeys inclusion we know that

ψ+(M = n,Γ[M]) ∪ Γ[M] |∼ γ[α[M]]

ψ+(M = n,∆[M]) ∪ ∆[M] |∼ γ[α[m]]
(9.11)

By right conjunction, then:

ψ+(M = n,Γ[M]) ∪ Γ[M] |∼ M = n ∧ γ[α[M]]

ψ+(M = n,∆[M]) ∪ ∆[M] |∼ M = n ∧ γ[α[m]]
(9.12)

Hence ψ+(M = n,Γ[M]) ∪ Γ[M] |∼ γ[α[n]], but not necessarily so for ψ+(M =

n,∆[M]) ∪ ∆[M]. In fact, it is impossible to change γ[α[m]] by accessing M , as by

inclusion, β ∪ Γ[M] |∼ γ[α[m]], for any β.

Example 9.5.1 is trivial in one way – of course γ[α[m]] will not get updated with

the new value of M = n since it does not depend on M . But this example showcases

how important parameters are, and how additive elaborations can perform parameter

changes, as long as the parameter in question is “seeded” properly. To change all

occurrences of M from m to n in Γ, it was enough to add ψ+(M = n,Γ[M]). The

instantiated theory ∆[M] on the other hand, will require extensive brain surgery in

order to replace all occurrences of α[n] with α[m]. The problem will be compounded

if there are other unrelated occurrences of m that are not supposed to be changed.

This example highlights the importance of using the unique roles assumption as a

104 CHAPTER 9. PROPERTIES OF S1,AB

guide in determining how to use parameters.

9.6 Compaction of S1,Ab

As we add our elaborations from Elab+(L1,LAb), the set of axioms in our system

〈L, `, |∼, Γ〉 grows and grows. Computationally (as well as conceptually), our set

of axioms will become more and more complicated. Can we “compact” our theory to

a simpler one which will admit the same elaborations?

It turns out the answer is yes, and the analysis of this compaction property of

S1,Ab provides some further insights into the workings of S1,Ab.

Throughout this section, assume Γ1,Ab(Υ) to be as described in (7.3). Specifically,

say it contains statements of the form φ ∧
∧

iAb(`i) ∨ φi, where φ, φi ∈ L1, and

`i ∈ Param, plus statements ΓAb about the ordering of the constants ` in Param.

Let Ψ ∈ Elab+(L1,LAb) consist of some sequence of elaborations Ψ = ψ1 ∧ . . . ∧ ψn,

where each ψj is one of the four forms:

1. φj ∈ L1

2. Ab(`+j) ∨ φj, where φj ∈ L1,

3. (Ab(`+j) ∨ φj) ∧ (Ab(`−j) ∨ ¬φj), where φj ∈ L1, and

4. (Ab(`k) ∨ φk) ∧ (∀Ab x)[Ab(`k) ∧ x < `k =⇒ Ab(x)], where φk ∈ L1.

Each of these four kinds of formulas corresponds to a kind of elaboration. The

first is a hard truth, while the second, a soft one. The third is our retraction formula

ψ∅(φj) and the fourth, our addition formula ψ+(φk).

The theory Σ = Ψ ∪ Γ1,Ab(Υ) represents the trajectory of any abnormalized L1

theory as we tack on more and more elaborations. We want to show that we can

always reformulate Σ to an equivalent, smaller set of formulas that will emulate its

behavior, even under subsequent elaborations.

Briefly, Compaction1(Σ) rewrites the elaboration of the form (∀Ab x)[Ab(`k)∧x <

`k =⇒ Ab(x)] to Ab(`k) =⇒ Ab(`), for each ` < `k. This way of compacting

9.6. COMPACTION OF S1,AB 105

theories is interesting because it detaches the theory’s dependence on <, and explicitly

models it using the implications. This points to a more general way of representing

additive elaborations, where the epistemic entrenchment ordering is itself amenable

to elaboration.

Definition 9.6.1 (Compaction1(Σ)). Let Σ be of the form above. We can generally

represent Σ as:

Σ = φ ∪

{Ab(`j) ∨ φj | j ∈ J} ∪

{(∀Ab x)[Ab(`k) ∧ x < `k =⇒ Ab(x)] | k ∈ K} ∪

ΓAb,

(9.13)

where K ⊆ J . Assuming Σ has the form in (9.13), we define the Compaction1 of

Σ to be:

Compaction1(Σ) =def φ ∪

{Ab(`j) ∨ φj | j ∈ J} ∪

{Ab(`k) =⇒ Ab(`) | k ∈ K ∧ ` ∈ Σ ∧ ` < `k ∈ ΓAb} ∪

ΓAb

(9.14)

Essentially, Compaction1(Σ) removes all occurrences of the form (∀Ab x)[Ab(`k)∧

x < `k =⇒ Ab(x)] and replaces them with the consequences Ab(`k) =⇒ Ab(`),

for each ` mentioned in Σ less than `k. This reformulation of Σ shows a more gen-

eral way of characterizing our abnormalization of Γ1. We see that the priority of

statements is controlled not really by <, but by the relationship Ab(`k) =⇒ Ab(`)

that is generated from the total order <. This detachment indicates there may be a

richer characterization of dependence amongst formulas that will avoid the problem

showcased in Example 4.4.3 of having to retract too much.

Rules of the form Ab(`k) =⇒ Ab(`j) can be interpreted as epistemic entrench-

ments, as briefly mentioned at the end of Section 11.4. In terms of our framework, if

our theory consists of

106 CHAPTER 9. PROPERTIES OF S1,AB

Ab(`k) =⇒ Ab(`j)

Ab(`k) ∨ φk

Ab(`j) ∨ φj,

(9.15)

then we will prefer having φk true over having φj be true, as if φk were false, both

Ab(`k) and Ab(`j) would hold. In the other case, at most Ab(`j) would have to be

true.

We provide a theorem showing that Compaction1(Σ) is equivalent to Σ, even

under elaborations, for |∼1,Ab.

Theorem 9.7.1 [Compaction1 equivalent to Σ under elaborations]. Let Σ be of

the form above. Then for any Ψ′ ∈ Elab+(L1,LAb) and φ ∈ L1, we have:

Ψ′ ∪ Σ |∼1,Ab φ ⇐⇒ Ψ′ ∪ Compaction1(Σ) |∼1,Ab φ (9.16)

Proof is in Section A.23.

9.7 Related Systems to and Notes about S1,Ab

[Winslett, 1989] has a system much like ours, which uses circumscription to compute

minimal change. It also has a notion of protected formulas which are akin to our hard

truths. Winslett uses a prioritization over predicates in the language. We argue that

our system is epistemologically better than hers because we prioritize formulas, not

predicates, which is more meaningful. Furthermore, we perform this prioritization

within the language.

In their critique of approaches to belief revision, [Friedman and Halpern, 1996]

notes that

It is far from obvious that in a given epistemic state K we should allow

arbitrary consistent formulas to be accepted. Intuitively, this does not

allow for the possibility that some beliefs are held so firmly that their

negations could never be accepted.

9.7. RELATED SYSTEMS TO AND NOTES ABOUT S1,AB 107

In our framework, the allowance for hard facts (via Υ) allows for the

non-admittance for the contradiction of these hard facts in our future elaborations.

We have used the idea of abnormalizing our given theory in order to endow it

with elaboration tolerance. This idea was first introduced in [Amir, 2000]. Amir

shows under his metric that an abnormalized theory is more elaboration tolerant

than the theory itself. This is not the case for general nonmonotonic theories and

their monotonic equivalents however. (See Section 2.4 for more details.)

As mentioned in 4.4, [Boutilier, 1996] is similar to our formalism, in that if we add

ψ+(α) and then some more elaborations, and then ψ+(¬α), then all soft facts added

before ψ+(α) will be retracted. The difference between our formalism and Boutilier’s

is that in ours, all soft formulas are retracted up to ψ+(α), while essentially only those

asserted between ψ+(α) and ψ+(¬α) are retracted in [Boutilier, 1996].

The mechanism that we have implemented looks also very similar to truth main-

tenance systems (TMSs), which explicitly represent dependencies between formulas

so as to efficiently and consistently enable retractions and additions of formulas.

There are two kinds of TMSs, justification-based (JTMS), and assumption-based

(ATMSs) [de Kleer, 1986]. JTMSs record whether each datum is in (believed) or out

(not believed). ATMSs record more information: each datum is instead labeled with

the assumptions that support it being true. We can interpret our system SAb in terms

of an ATMS, regarding our Abs as labels for assumptions. Hence for each formula

¬Ab(`) =⇒ φ ∈ SAb, ¬Ab(`) implicitly represents the assumptions that allow φ to

hold. The main difference between SAb and the ATMS is that the Ab-labels never ex-

plicitly reference this set of assumptions; rather they are inherently represented by the

interactions of the Abs through the precedence ordering of our labels and through the

truths of the other L1-formulas to which they are attached. This existential quality

of the Abs with respect to assumptions is fundamental to the elaboration tolerance of

SAb – since the underlying assumptions are never explicitly equated with a particular

Ab, they are easier to change later on.

[Friedman, 1978] also uses a construction similar to abnormalization. This con-

struction is known as Friedman’s translation, where one adds a disjunct to a formula.

This construction is used to prove that Heyting arithmetic (HA – the intuitionistic

108 CHAPTER 9. PROPERTIES OF S1,AB

version of Peano arithmetic (PA)) is closed under Markov’s rule. This result allows

one to show that “every Turing machine program that, provably in PA, converges at

all arguments, also does provably in HA.” The same translation is used to prove a

similar result, that the provably recursive functions and provable ordinals of classi-

cal and intuitionistic set theory are the same. In both cases, Friedman’s translation

fosters a clean navigation of the strict constructive proof rules of HA.

The relationship between intuitionistic systems, which only derive a subset of the

conclusions of the classical ones, and elaboration tolerance is a task for future work.

The extra formulas appended by Friedman’s translations provide “outs,” or places

where we can insert more information into our rules as needed (similar to the hooks

used in Emacs functions). It could be that the rules of intuitionistic logic, which are

constructive by nature, work synergistically in the presence of these outs. 1

[van Eijck and Kamp, 1997] presents the notion of discourse representation theory,

meant to describe the semantics of multi-sentence discourse. It is based on the view

that

each new sentence S of a discourse is interpreted in the context provided

by the sentences preceding it. . . . one and the same structure serves si-

multaneously as content and as context.

Discourse representation theory is mainly used to handle anaphora between sen-

tences. This approach shares our view that discourse is a dynamic object, perpetually

prone to update by future utterances. But the two systems have different focuses.

Our system SAb focuses on the retraction and addition of formulas; the basic entities

are formulas. The one in [van Eijck and Kamp, 1997] on the other hand is primed to

represent anaphora, which are relationships between objects mentioned in sentences.

SAb does not work at a sufficient level of detail to deal with these structures. It is

possible, however, that a more general construction, explored in Section 11.4, can

represent this capability.

1Thanks to Professor Grigori Mints for the reference.

Part III

Extensions

109

Chapter 10

Elaboration Tolerance and AI

Formalisms

In this chapter we explore some relationships between other fields of AI and elabo-

ration tolerance. Belief revision (Section 10.1) and reformulation (Section 10.2) have

many similar characteristics. In fact some of the tenets of belief revision (the AGM

postulates) can be adapted to provide additional intuitive constraints on S1,Ab. But

overall, elaboration tolerance, particular our implementation of additive elaboration

tolerance, differs from the two fields in important ways.

This thesis has mainly focused on the elaboration tolerance of logical structures.

To balance this out, we also explore how elaboration tolerance relates to Bayesian

networks and neural networks in Sections 10.3 and 10.4.

10.1 Belief Revision

Elaboration tolerance looks very similar to belief revision as they both involve change

to a knowledge base. In this chapter we examine how these areas of research overlap,

and how they differ.

110

10.1. BELIEF REVISION 111

10.1.1 Overview of Belief Revision

Belief revision [Gärdenfors, 1992] is concerned with how one revises one’s beliefs,

given some specified change. Most work on belief revision uses sets of formulas (usu-

ally propositions, but sometimes first-order logic) to represent their knowledge base

K. In this framework, updates to K are implemented by means of set-theoretical

operations combined with some logical operators. There are three different kinds of

belief changes:

1. expansion,

2. revision, and

3. contraction.

In expansion, one simply adds some formula ψ to the set of formulas in K. This

operation is simple set union, which means it could very well create an inconsistent

set of formulas. Revision on the other hand, is smarter, in that it changes other facts

in order to accommodate the expected revision, preserving consistency at all costs. So

for example, if α and α =⇒ β are in the current set of beliefs, and we want to revise

our beliefs to include ¬β, the revision operator will either retract α or α =⇒ β, or

both. Finally contraction removes some formula from the knowledge base K. It is like

revision, in that not only is the desired formula ψ removed, but surgery is performed

on K to ensure ψ is not concluded by other means.

These sets of formulas, called belief states, are usually closed under logical con-

sequence. Some researchers disapprove of this notion, as this logical closure tends

to lose the information about what formulas were original and which were derived.

Instead bases of belief sets are used, which are subsets of the belief set, to distinguish

the original beliefs from those which are derived by inference.

Other researchers use possible worlds to model belief sets. The intuition here is

that people, when describing their beliefs, do not keep track of some set of sentences

representing their beliefs, but imagine truth in terms of possible worlds. In general,

belief sets are preferred for computation, as they are a more tractable paradigm than

possible worlds.

112 CHAPTER 10. ELABORATION TOLERANCE AND AI FORMALISMS

Foundations versus Coherence Approach

There are two different philosophies describing how people change their beliefs, the

foundations versus the coherence approach. In the foundations approach, also known

as the justifications approach, every reason for a belief is included in a model. One

holds a belief to be true, as long as there is a reason to do so. If there is no reason

to have a belief, then the belief is removed from the belief set. In this paradigm, the

semantics of deciding what to believe given an update is completely decided by the

structure of the justifications.

In the coherence approach, the pedigrees of a belief are not preserved. This

approach instead focuses on the logical relations between formulas, and reacts to

change by preserving consistency while minimizing change. The famous AGM pos-

tulates [Alchourrón et al., 1985] (described in detail later) is an example of the co-

herence approach. These are rules which govern contraction and revision operations,

specifying which logical relationships they should satisfy. They work on sets of logical

sentences, and try to preserve some kind of logical harmony between beliefs.

Epistemic Entrenchment

One important feature of belief states is epistemic entrenchment, which measures how

strongly one holds a particular belief. This measure is used to govern revisions and

contractions – if one has to choose between two different beliefs to abandon, one can

drop the one which is less epistemically entrenched. As discussed earlier, as well as

later in Section 10.1.2, we do implement a form of epistemic entrenchment via our Abs

in S1,Ab. Our approach is slightly more expressive in that the truth of our formulas

affects how they interact. Also most entrenchment orderings are static, while ours is

changeable over time.

The AGM Postulates

A tour of belief revision would be incomplete without mention of the AGM postulates.

The AGM postulates [Alchourrón et al., 1985] characterize the desirable properties

one would like a belief revision and belief contraction operator to have. There are

10.1. BELIEF REVISION 113

eight for revision and eight for contraction, and there are representation theorems that

show that if a revision/contraction operator obeys various subsets of these postulates,

the operator in question can be defined in terms of a selection function.

Let K represent a belief set (a logically closed set of formulas), and φ some other

logical formula. The notation K−̇φ is the belief state resulting in contracting φ from

K, that is, removing it from K. K u φ on the other hand is the belief state resulting

from revising φ in K. The notation K + φ is simply the result of adding the formula

φ to K, and closing the result under standard consequence. Note that K⊥ refers to

the inconsistent belief state, which consists of all formulas in the language.

The AGM postulates for contraction are [Gärdenfors, 1992]:

(1c) For any sentence φ and belief set K, K−̇φ is a belief set.

(2c) K−̇φ ⊆ K.

(3c) If φ 6∈ K, then K−̇φ = K

(4c) If not ` φ, then φ 6∈ K−̇φ

(5c) If φ ∈ K then K ⊆ (K−̇φ) + φ

(6c) If ` φ ⇐⇒ ψ then K−̇φ = K−̇ψ

(7c) (K−̇φ) ∩ (K−̇ψ) ⊆ K−̇(φ ∧ ψ)

(8c) If φ 6∈ K−̇(φ ∧ ψ) then K−̇(φ ∧ ψ) ⊆ K−̇ψ.

The AGM postulates for revision are:

(1r) For any sentence φ and belief set K, K u φ is a belief set.

(2r) φ ∈ K u φ.

(3r) K u φ ⊆ K + φ.

(4r) If ¬φ 6∈ K then K + φ ⊆ K u φ.

(5r) K u φ = K⊥ iff ` ¬φ.

114 CHAPTER 10. ELABORATION TOLERANCE AND AI FORMALISMS

(6r) If ` φ ⇐⇒ ψ then K u φ = K u ψ.

(7r) K u (φ ∧ ψ) ⊆ (K u φ) + ψ.

(8r) If ¬ψ 6∈ K u φ, then (K u φ) + ψ ⊆ K u (φ ∧ ψ).

These sets of axioms are parallel. Items (1c) and (1r) assert that the contractions

and revisions are closed under logical consequence (the definition of a belief set). Rules

(2c), (3c), (4c), and (2r), (3r), (4r), and (5r) restrict the altered belief sets compared to

the original belief set, particularly when the revision/contraction is somewhat trivial,

such as for contraction, when φ does not need to be retracted, or in revision, when

it is consistent to add φ. (5c) is a recovery postulate which asserts how the effect of

undoing a contraction is related to the original set. (6c) and (6r) simply assert that

the contractions and revisions respect logical equivalence, while (7c), (8c), (7r) and

(8r) show how the contractions and revisions relate to the conjunction operator ∧.

There are two identities which define the revision operator in terms of the con-

traction one, and vice versa:

K uLI φ =def (K−̇LI¬φ) + φ Levi Identity

K−̇HIφ =def K ∩ (K uHI ¬φ) Harper Identity
(10.1)

If −̇LI satisfies all the contraction postulates except (5c), then uLI defined by

the Levi Identity satisfies all eight revision postulates. Also, if uHI satisfies all eight

revision postulates, then −̇HI will satisfy all eight contraction ones.

Another interesting fact about the AGM postulates is that they characterize how

−̇ operates over worlds in terms of selection functions. Let K ⊥ φ be those maximal

subsets of K, closed under logical consequence, that fail to imply φ, that is

K ⊥ φ =def {U ⊆ K}{U = Conseq(U) ∧ φ 6∈ U∧

(∀V ⊆ K)[U ⊂ V ∧ V = Conseq(V) =⇒ φ ∈ V]}.
(10.2)

Then a selection function γ is a function that chooses some subset of sets from

K ⊥ φ. Given this function, one can define contraction in terms of this partial meet

contraction function as follows:

10.1. BELIEF REVISION 115

K−̇φ =def

⋂

γ(K ⊥ φ). (10.3)

In other words, to contract φ from K, we take some subsets of K ⊥ φ, take the

intersection, and return that as our new belief set K−̇φ. What is fascinating is that

there is a theorem indicating that −̇ can be defined in terms of some partial meet

contraction function γ iff it satisfies postulates (1c) – (6c). This is an intriguing

result because it shows that the AGM postulates are enough to characterize a kind

of background semantics.

Update versus Revision

Finally, we should distinguish between two types of change to a theory: belief update

and belief revision [Katsuno and Mendelzon, 1992], first pointed out by

[Keller and Wilkins, 1985]. Belief revision deals with properly describing a static

world, while belief updates are used to properly describe that the world has changed.

Update is more intrusive since it does not care as much about mutual consistency of

facts, but that the model properly represents the updated world.

The two approaches have different semantics as well. To revise K with φ, any

revision function satisfying the AGM postulates can be viewed in terms of finding

the models of φ that are closest to those of K. Update on the other hand, is more

complicated. For each model M of K, we find the set of models of φ that are closest to

M. The resulting theory is the one which holds in the union of these closest models,

for each model M of K. [Katsuno and Mendelzon, 1992] gives AGM style postulates

for this kind of update, as well as a notion of “erasure.” Erasing φ corresponds to

representing a change to the world where φ may not be true.

We believe that elaborations perform both of these kinds of alterations. We often

elaborate our representations in order to clear up any confusions, as in “there is no

bridge across the river” with respect to the missionaries and cannibals problem, as

well as to purposely change the listener’s view of the world: “change the number of

missionaries and cannibals from three to four.” In our opinion, we do not need to

distinguish between these two kinds of alterations, as we are more concerned with

116 CHAPTER 10. ELABORATION TOLERANCE AND AI FORMALISMS

issues of representation, and both of these phenomena are indistinguishable on that

level. In terms of semantics, we believe that both of these kinds of changes can be

modeled by the behaviors of our choice function f under addition of formulas.

10.1.2 Elaboration Tolerance versus Belief Revision

Both elaboration tolerance and belief revision involve some kind of change to a knowl-

edge base. While belief revision focuses on what beliefs should stay/be added after

such a change, elaboration tolerance is more concerned with the properties of the

underlying representational mechanism characterizing such change within the logic.

In practice, the purpose of elaboration tolerance is the opposite of belief revision;

while belief revision is concerned with the effects of adding or deleting a certain sen-

tence, elaboration tolerance cares more about what formula must be added or deleted

to incur a certain change [McCarthy, 1998].

Additive elaboration tolerance lies one level below belief revision, in that it fo-

cuses on the way change can be represented and implemented compactly, within the

representation. That said, elaboration tolerance shares belief revision’s concern in

deciding what other facts should remain in the knowledge base. A theory of elabora-

tion tolerance would be useless if it did not also properly characterize the “inertia”

of unrelated statements after a change. For example, after changing the number of

missionaries and cannibals from three to four, we should infer that there are a total

of eight people participating in the scenario, but still believe there is only one boat.

Elaboration tolerance and belief revision interpret their changes in subtly different

ways. When applying a change to the set of beliefs, belief revision (particularly in

the coherence approach) uses two main criteria to accommodate the change: the

logical relationship between formulas, and the epistemic entrenchment. Since any

change must preserve consistency, formulas may need to be removed to accommodate

a new added formula. Epistemic entrenchment is used to decide which formulas are

to be removed. In elaboration tolerance, how to decide which formulas to retract,

in addition to the one specified, depends entirely on the meaning of the formulas.

While logical consequence is one aspect that is necessary, it only skims the surface.

10.1. BELIEF REVISION 117

There are all sorts of semantic entanglements that need to be represented within the

theory, that go far beyond even epistemic entrenchment, although that can be used as

a means to model some of the dependencies. Hence, elaboration tolerance requires a

finer view of the meanings of the formulas, and how they depend on each other. This

is one of the main reasons we have relied so heavily on a nonmonotonic consequence

relation, which we have used as a means to enforce all these dependencies, without

articulating them fully within the logic.

On another plane, characterizing inertia should be much simpler for elaboration

tolerance than belief revision. Since elaboration tolerance is often based on common

communication conventions, the form of inertia it employs should be unique, being

used by all agents. Belief revision, on the other hand, must be able to model a

multiplicity of inertias, since the kind of inertia could be agent-specific.

Our study of additive elaboration tolerance has been greatly motivated by human

discourse, and to a large extent we have copied many aspects of discourse. For

example, we distinguish between utterances, and the facts embedded in them. For

example, ψ∅(α) means “forget α”, while ψ+(α) means to “assert α for now.” These

are very different from the sentences ¬α and α, which simply assert the falsity/truth

of α. Elaboration tolerant structures generalize those structures of belief revision,

because they represent, within the logic, the actions that are performed upon the

database. This allows them to include the history of change that has taken place.

This is important, because often an elaboration depends on the statements that have

been previously uttered: “forget that last sentence.” Belief structures which operate

by way of sets of propositions manipulated by logical operators do not retain this

information and hence cannot support these more expressive elaborations.

As mentioned before, there are two ways to view a representation. The first is

as reified facts, each of which can be manipulated. The second is in terms of the

models (possible worlds) that are described by the set of sentences. In some sense,

we need both interpretations. The first is necessary because we often refer to distinct

sentences in our discourse, as in “scratch that last sentence.” But we also need possible

worlds as a clean construct within which to describe other intuitions, such as minimal

change and epistemic entrenchments. Our approach is flexible because it allows for

118 CHAPTER 10. ELABORATION TOLERANCE AND AI FORMALISMS

both modalities. By labeling our sentences with the Ab(`)s we have somewhat reified

our sentences, but we view our transformations in terms of the choice functions. As

shown in Examples 9.4.1 and 9.4.2, our approach is sensitive to the syntax of our

theories, while most belief revision approaches are not (particularly those that do not

use bases of belief sets).

10.1.3 S1,Ab and Belief Revision

It is illuminating to see how our system S1,Ab for adding and retracting formulas

fits in the framework of belief revision. For example, S1,Ab, follows the spirit of

the justifications approach, but encodes these justifications in such a way that we

only care about the logical consistency of the resulting theory (corresponding to the

coherence approach). The justifications for a belief are inversely represented by the

form of our statements in S1,Ab: Ab(`) ∨ φ means “unless we have information to

the contrary, assume that φ holds.” Then we can unjustify φ by indirectly asserting

Ab(`).

Unlike the approaches to belief revision which employ belief sets, our S1,Ab can

in fact distinguish between the original beliefs and those that are derived. This

is because our labels Ab(`) “reify” our sentences to the extent that they can be

referenced, allowing them to be distinguished from their consequences. We can view

our abnormalization operation AB as creating a basis of a belief set from our set

of logical sentences by appending the disjuncts Ab(`). We have further flexibility in

being able to denote hard facts which are not subject to revision.

As mentioned at the end of Section 9.6, the encoding of the justifications leads to

a simple sort of epistemic entrenchment. The justifications, or relations between our

semantic content in L1, are related by formulas of the form Ab(`k) =⇒ Ab(`j). If

we have Ab(`k) ∨ φk and Ab(`j) ∨ φj, and we have to assume one of these is false in

order to properly revise our knowledge base, it is better to pick φj instead of φk, in

order to minimize the extension of Ab. Hence Ab(`k) =⇒ Ab(`j) means φk is more

epistemically entrenched than φj. But since we can always add Ab(`j) =⇒ Ab(`k)

and cancel out this dependency, this epistemic entrenchment is itself modifiable.

10.1. BELIEF REVISION 119

These Ab labels provide a mild level of illocutionary force to our sentences, in that

aspects about the message are represented as well, via the Ab labels. Most approaches

in belief revision do not have this modality.

We find it satisfying that our SAb partly satisfies two major critiques of belief

revision [Friedman and Halpern, 1996]:

1. how the epistemic state of an agent is modeled, and

2. the status of observations

The first bullet refers to the fact that an epistemic state may not be expressive

enough. For example, we may also want to include beliefs about beliefs. By assert-

ing our retraction and addition formulas ψ∅(α) and ψ+(α) within the language itself,

we do allow some of this modality. What is even more important is that we allow

statements about the relative strengths of beliefs (in the compacted form Ab(n) =⇒

Ab(m)) within our language, which fulfills [Friedman and Halpern, 1996]’s require-

ment:

the fact that an agent’s epistemic state is characterized by a collection

of formulas means that the epistemic state cannot include information

about relative strength of beliefs (as required for the approach of, say,

[Gärdenfors and Makinson, 1988]), unless this information is expressible

in the language.

Another criticism of belief states is that there is no way to represent beliefs which

are held so firmly that their negations could never be accepted. This relates to the

second bullet, in that there is no distinction between facts versus beliefs. SAb does

represent this difference through the hard and soft facts – what Friedman and Halpern

call knowledge and belief.

10.1.4 Formal Connections between Frameworks

Section 10.1.1 refers to the representation theorem which states that any function −̇

obeying the AGM postulates for contraction can be described in terms of a selection

120 CHAPTER 10. ELABORATION TOLERANCE AND AI FORMALISMS

function γ. The contraction K−̇φ is equivalent to the intersection of some subset

(chosen by γ) of the maximal subsets of K which do not imply φ, as shown in (10.2).

This selection function looks very much like our choice function. Although γ works

in terms of sets of formulas, it can be viewed as choosing the set of possible worlds

in which as many facts of K hold as possible, but where φ does not hold universally.

Our choice function f ∗ · g∗ on the other hand, simply chooses some subset of models

of ψ∅(φ,Γ) ∪ Γ which is not entirely contained in Mod(φ). γ is slightly different from

f ∗ ·g∗ in that γ directly imbues semantics to a revision by φ, whereas f ∗ ·g∗’s primary

purpose is to generate consequences, and only as a by-product provides the results of

a revision. This difference in fundamental semantics will affect how we interpret the

AGM postulates in terms of S1,Ab.

S1,Ab and the AGM Postulates for Contraction

It is intriguing to examine how our retraction operation of adding ψ∅(α) to our sen-

tences relates to the AGM postulates for contraction. From now on, we will interpret

the notation K−̇φ as {φ | ψ∅(α,Γ) ∪ Γ |∼1,Ab φ}, where Γ = AB(K). The AGM pos-

tulates work in a paradigm where any truth is retractable. To make our formalism

compatible, we assume that Γ is fully retractable for α.

Finally, we should note that our retraction operator has slightly different semantics

from contraction. When we retract α, we are definitely ensuring that α is forgotten

– neither α nor ¬α can be inferred. Standard contraction on the other hand is one-

sided, only caring about removing α as a consequence. If ¬α held, the result of

the contraction would be unchanged. However, we can reinterpret the AGM rules,

while keeping within the spirit of the postulates, to find interesting correspondences

and constraints of AGM with S1,Ab. That is, some of the AGM postulates serve

to constrain our choice functions f and g further, while others are verified by our

paradigm.

We provide a sketch of these relations next.

1. For any sentence φ and belief set K, K−̇φ is a belief set.

We define a belief set as just a set of sentences closed under |∼1,Ab, so this

10.1. BELIEF REVISION 121

property is true by definition.

2. K−̇φ ⊆ K.

This corresponds to the requirement that

[f ∗(g∗(Mod(Γ)))]` ⊆ [f ∗(g∗(Mod(ψ∅(φ,Γ) ∪ Γ)))]`, (10.4)

which means that as we change our models to include models where φ does not

hold, we must keep all of the models from before.

To show (10.4), we must prove that for any (a1, a2) ∈ f ∗(g∗(Mod(Γ))), then

there is some a∗2 such that (a1, a
∗
2) ∈ f

∗(g∗(Mod(ψ∅(φ,Γ) ∪ Γ))), or that

(a1, a2) ∈ g
∗(Mod(Γ)) ∧ a1 ∈ f([g∗(Mod(Γ))]`) =⇒

(∃a∗2)[(a1, a
∗
2) ∈ g

∗(Mod(ψ∅(φ,Γ) ∪ Γ)) ∧

a1 ∈ f([g∗(Mod(ψ∅(φ,Γ) ∪ Γ))]`)]

(10.5)

By the Monotonic Retraction Lemma, [g∗(Mod(Γ))]` ⊆ [g∗(Mod(ψ∅ ∪ Γ))]`, so

(10.5) reduces to

a1 ∈ f([g∗(Mod(Γ))]`) =⇒ a1 ∈ f([g∗(Mod(ψ∅(φ,Γ) ∪ Γ))]`)], (10.6)

which asserts that f must be monotonically increasing on addition of ψ∅, from

[g∗(Mod(Γ))]` to [g∗(Mod(ψ∅ ∪ Γ))]`. This will be trivially satisfied if f is

monotonically increasing in general. Note that normal logical consequence,

where f is the identity, satisfies this requirement.

3. If φ 6∈ K, then K−̇φ = K

This rule asserts that if K does not already entail φ, then the contraction does

not change anything. The corresponding rule should be:

122 CHAPTER 10. ELABORATION TOLERANCE AND AI FORMALISMS

f ∗(g∗(Mod(Γ))) 6⊆Mod(φ) ∧ f ∗(g∗(Mod(Γ))) 6⊆Mod(¬φ) =⇒

[f ∗(g∗(Mod(ψ∅(φ,Γ) ∪ Γ)))]` = [f ∗(g∗(Mod(Γ)))]`.
(10.7)

That is, if Γ neither entailed φ or ¬φ originally, adding ψ∅(φ) should not have

changed any conclusions.

To show this, by the [f ∗]`-Equivalence Lemma, it is enough to show that

[g∗(Mod(Γ))]` = [g∗(Mod(ψ∅(φ,Γ) ∪ Γ))]`, or by the Monotonic Retraction

Lemma, that [g∗(Mod(Γ))]` ⊇ [g∗(Mod(ψ∅(φ,Γ) ∪ Γ))]`.

Since there are models of both φ and ¬φ in g∗(Mod(Γ)), it would seem that

adding ψ∅(φ) to Γ should not change the L1 models, but this remains to be

formally shown.

4. If not ` φ, then φ 6∈ K−̇φ

The essence of this rule is that as long as φ is not a tautology, retracting it

from Γ will be properly accomplished. This can be translated to a version

of the definition of full retraction, proved to be correct in the Full Retraction

Theorem.

f ∗(Mod(Γ)) 6⊆Mod(φ) ∧ f ∗(Mod(Γ)) 6⊆Mod(¬φ) =⇒

f ∗(g∗(Mod(ψ∅(φ,Γ) ∪ Γ))) 6⊆Mod(φ) ∧

f ∗(g∗(Mod(ψ∅(φ,Γ) ∪ Γ))) 6⊆Mod(¬φ)

(10.8)

5. If φ ∈ K then K ⊆ (K−̇φ) + φ.

This rule asserts that if φ is a consequence of Γ, then retracting it, and then

adding it again as a hard fact will contain the same consequences as before the

operations.

f ∗(g∗(Mod(Γ))) ⊆Mod(φ) =⇒

[f ∗(g∗(Mod(φ ∪ ψ∅(φ,Γ) ∪ Γ)))]` ⊆ [f ∗(g∗(Mod(Γ)))]`
(10.9)

10.1. BELIEF REVISION 123

6. If ` φ ⇐⇒ ψ then K−̇φ = K−̇ψ

` φ ⇐⇒ ψ =⇒ f ∗(g∗(Mod(ψ∅(φ,Γ) ∪ Γ))) = f ∗(g∗(Mod(ψ∅(ψ,Γ) ∪ Γ)))

(10.10)

If ` φ ⇐⇒ ψ then Mod(ψ∅(φ,Γ) ∪ Γ) = Mod(ψ∅(ψ,Γ) ∪ Γ), so that (10.10)

follows trivially.

7. (K−̇φ) ∩ (K−̇ψ) ⊆ K−̇(φ ∧ ψ)

This one requires some further inspection. If we have a consequence α which

follows from both K−̇φ and K−̇ψ, then it must follow from K−̇(φ ∧ ψ):

(∀α ∈ L1)[f ∗(g∗(Mod(ψ∅(φ,Γ) ∪ Γ))) ⊆Mod(α) ∧

f ∗(g∗(Mod(ψ∅(ψ,Γ) ∪ Γ))) ⊆Mod(α) =⇒

f ∗(g∗(Mod(ψ∅(φ ∧ ψ,Γ) ∪ Γ))) ⊆Mod(α)]

(10.11)

This is equivalent to the statement that f ∗(g∗(Mod(ψ∅(φ∧ ψ,Γ) ∪ Γ))) is con-

tained in the smallest definable set that includes f ∗(g∗(Mod(ψ∅(φ,Γ) ∪ Γ)))

∪ f ∗(g∗(Mod(ψ∅(ψ,Γ) ∪ Γ))). Note that f ∗(g∗(Mod(ψ∅(φ∧ ψ,Γ) ∪ Γ))) itself

may not be definable.

8. If φ 6∈ K−̇(φ ∧ ψ) then K−̇(φ ∧ ψ) ⊆ K−̇ψ.

f ∗(g∗(Mod(ψ∅(φ ∧ ψ,Γ) ∪ Γ))) 6⊆Mod(φ) =⇒

f ∗(g∗(Mod(ψ∅(ψ,Γ) ∪ Γ))) ⊆ f ∗(g∗(Mod(ψ∅(φ ∧ ψ,Γ) ∪ Γ)))

(10.12)

If our retraction of φ ∧ ψ is successful for φ, then the results of the retraction

will be a subset of the facts obtained by just retracting ψ.

124 CHAPTER 10. ELABORATION TOLERANCE AND AI FORMALISMS

S1,Ab and the AGM Postulates for Revision

We can also examine how our ψ+(φ) measures up in terms of the AGM revision

postulates, if K u φ is defined to be {α | ψ+(φ,Γ) ∪ Γ |∼ α} or

{α | f ∗(g∗(Mod(ψ+(φ,Γ) ∪ Γ))) ⊆Mod(α)}, where again Γ = AB(K).

1. For any sentence φ and belief set K, K u φ is a belief set.

This trivially holds.

2. φ ∈ K u φ.

f ∗(g∗(Mod(ψ+(φ,Γ) ∪ Γ))) ⊆Mod(φ) (10.13)

Looking back at the definition of ψ+(φ) this will hold if Consis(φ,Γ), or if

Mod(Γ) 6⊆ ¬φ. Unlike the AGM postulate, φ has to be possible in Γ before Γ

can be revised to entail φ.

3. K u φ ⊆ K + φ.

The conclusions that follow from φ ∪ Γ also follow from ψ+(φ,Γ) ∪ Γ.

[f ∗(g∗(Mod(φ ∪ Γ)))]` ⊆ [f ∗(g∗(Mod(ψ+(φ,Γ) ∪ Γ)))]` (10.14)

This unravels to:

(∀(m1,m2))[(m1,m2) ∈ g
∗(Mod(φ ∪ Γ)) ∧m1 ∈ f([g∗(Mod(φ ∪ Γ))]`) =⇒

(∃m∗
2)(m1,m

∗
2) ∈ g

∗(Mod(ψ+(φ,Γ) ∪ Γ))∧

m1 ∈ f([g∗(Mod(ψ+(φ,Γ) ∪ Γ))]`)]

(10.15)

By the ψ+ Covering Lemma, g∗(Mod(φ ∪ Γ)) ⊆ g∗(Mod(ψ+(φ) ∪ Γ)), so (10.15)

is true if

f([g∗(Mod(φ ∪ Γ))]`) ⊆ f([g∗(Mod(ψ+(φ,Γ) ∪ Γ))]`), (10.16)

is. (10.16) is easily satisfied if f is monotonic on all inputs.

10.1. BELIEF REVISION 125

4. If ¬φ 6∈ K then K + φ ⊆ K u φ.

f ∗(g∗(Mod(Γ))) 6⊆Mod(¬φ) =⇒

[f ∗(g∗(Mod(ψ+(φ,Γ) ∪ Γ)))]` ⊆ [f ∗(g∗(Mod(φ ∪ Γ)))]`
(10.17)

If it is possible that φ can hold in K, then the facts derivable from forcing φ to

hold are a subset of those from adding φ with ψ+.

5. K u φ = K⊥ iff ` ¬φ.

This postulate exemplifies how our framework generalizes AGM. If Γ were en-

tirely soft, that is, every fact were possible, then we would have to interpret the

above as

f ∗(g∗(Mod(ψ+(φ,Γ) ∪ Γ))) = Struct(L1) ⇐⇒ ` ¬φ, (10.18)

that is, when told to believe a “lie,” the shock makes us revert to believing noth-

ing. The flip side of (10.18) is that we can become completely ignorant only when

confronted with such a lie. If Γ has no hard facts, g∗(Mod(ψ+(φ,Γ) ∪ Γ)) should

return all possible L1-structures. Then (10.18) will require f(Struct(L1)) =

Struct(L1), which when combined with its properties of contraction and coher-

ence, forces f to be the identity (normal first order logic.)

If Γ contained some hard facts Υ, the result is more confusing. Then intuitively

g∗(Mod(ψ+(φ,Γ) ∪ Γ)) should only return the hard facts of Γ (at least we are

shocked, but not enough to despair in all of our facts):

f ∗(g∗(Mod(ψ+(φ,Γ) ∪ Γ))) = Mod(Υ) ⇐⇒ ` ¬φ. (10.19)

This however is a little strange because it requires f to be able to recognize

the hard facts of Γ, and pass them through without preferring any of the mod-

els. Hence this postulate only seems to make much sense when Γ is entirely

defeasible.

126 CHAPTER 10. ELABORATION TOLERANCE AND AI FORMALISMS

6. If ` φ ⇐⇒ ψ then K u φ = K u ψ.

This again is just showing that equivalent formulas are interchangeable in our

paradigm, something that is patently true.

(` φ ⇐⇒ ψ) =⇒ f ∗(g∗(Mod(ψ+(φ,Γ) ∪ Γ)))= f ∗(g∗(Mod(ψ+(ψ,Γ) ∪ Γ)))

(10.20)

7. K u (φ ∧ ψ) ⊆ (K u φ) + ψ.

f ∗(g∗(Mod(ψ ∪ ψ+(φ,Γ) ∪ Γ))) ⊆ f ∗(g∗(Mod(ψ+(φ ∧ ψ,Γ) ∪ Γ))) (10.21)

This postulate will involve an investigation of how ψ+ behaves in conjunction

with ∧.

8. If ¬ψ 6∈ K u φ, then (K u φ) + ψ ⊆ K u (φ ∧ ψ).

f ∗(g∗(Mod(ψ+(φ,Γ) ∪ Γ))) 6⊆Mod(¬ψ) =⇒

f ∗(g∗(Mod(ψ+(φ ∧ ψ,Γ) ∪ Γ))) ⊆ f ∗(g∗(Mod(ψ ∪ψ+(φ,Γ) ∪ Γ)))

(10.22)

If ψ is possible in the result of adding φ, then every fact derivable from the

addition of φ plus the hard addition of ψ is derivable from the addition of φ∧ψ.

S1,Ab and the Levi and Harper Identities

The Levi identity (10.1) on its face is not in the spirit of our formalism, because if we

just added φ to our set of beliefs, it would never be retractable. If on the other hand

we added Ab(`) ∨ φ after ψ∅(φ ∪ Γ), we would not end up inferring φ. The reason

why is that our semantics keep track of all of our previous utterances, so although

we have retracted φ, these previous utterances will react with Ab(`) ∨ φ so that it is

10.2. REFORMULATION 127

unlikely that φ will hold. (Although we conjecture the cardinality of models which

espouse α will increase relative to those which did not!) We are emulating the desired

phenomenon discussed in [Friedman and Halpern, 1996], where simply observing φ is

not enough to conclude φ – we have to be told φ.

The Harper identity (10.1) is a little more applicable. In this case, if we de-

fine K u φ as above, K−̇HIφ corresponds to adding ψ+(¬φ,K) to K, and then

taking the smallest definable set of models which contains both f ∗(g∗(Mod(K)))

and f ∗(g∗(Mod(ψ+(¬φ,K) ∪ K))). The only problem is that if f ∗(g∗(Mod(K))) ⊆

Mod(¬φ), then instead of truly revising K to include models of φ along with those of

¬φ, we end up concluding ¬φ, making −̇HI much too weak as a retraction operator.

10.2 Reformulation

10.2.1 Overview of Reformulation

Reformulation focuses on how to change representations so that they are easier

to reason about. Related areas of research include abstraction and approximation.

[Giunchiglia and Walsh, 1992] provides a sweeping survey of abstractions, which are

defined as mappings from one axiomatic formal system (〈L, |∼, Γ〉) to another. They

distinguish between theorem-increasing (TI), theorem-decreasing (TD) and theorem

constant (TC) abstractions, which describe how the mapping preserves theorems in

one system in the transition to the other system. The work shows how a large array

of problems in AI fall into their framework, which we do not repeat here.

But the attraction of reformulation is not restricted to AI. Users of databases also

find it helpful to reformulate their databases, to optimize them it the presence of

some set of expected queries. [Chirkova, 2000] finds rewritings of databases which

are at most a linear multiple of the original, which can answer a set of queries in a

shorter amount of time.

128 CHAPTER 10. ELABORATION TOLERANCE AND AI FORMALISMS

10.2.2 Elaboration Tolerance Versus Reformulation

The field of reformulation, like belief revision, looks very much like elaboration tol-

erance, as it also involves change to a knowledge base of some sort. However, the

underlying goals are different and intensions are very different. Reformulation seeks

to find ways to change representations so that it is easier to solve some particular

problem. Usually the change loses information, or makes some particular structure

more perspicuous, to reduce computation. On the other hand, the purpose of an elab-

oration is not to change the (syntax of the) representation for computational means,

but to change its meaning.

Furthermore, while reformulation is concerned with rewriting a particular repre-

sentation to make it more efficient, elaboration tolerance cares more about the effi-

ciency with which a representation can admit change, generally. Elaboration tolerance

looks for one particular representation that is amenable to any proposed “reformula-

tion.” The ultimate elaboration tolerant representations will not require any change

to their language; at most they will simply require the addition of more symbols to

express new concepts (as in human discourse).

10.3 Bayesian Networks

When we speak of a Bayesian network’s elaboration tolerance, we refer to the ability

to add more dependencies between variables, simply by adding nodes, with minimal

effort. The minimal effort stipulation requires us to only add child nodes to an existing

network; adding parents to a node will require us to change the associated conditional

probability tables. Adding a child however is no problem, as this does not require

any changes to the original structure.

While primary dependencies can only be extended from a node to its child, sec-

ondary dependencies can occur between two nodes, even those that are not directly

connected to each other. This phenomenon is based on the concept of the d-separation

of nodes: knowing the value of the ancestor or descendant of a node, can affect the

values the node can take. More importantly, two nodes can become correlated if a

10.4. NEURAL NETWORKS 129

mutual child’s value is known. If the original Bayesian network accurately represents

the fundamental interactions between components, these secondary dependencies that

follow from the model should be representable as well.

A Bayesian network also exhibits elaboration tolerance through the use of its ex-

ogenous variables. These are input variables that influence the behavior of other

nodes in the network, but are not considered to be explained by the network. These

exogenous variables could serve as easy entry points (“back doors”) to add more

parents/influencers to a node when desired, to better elaborate some aspect of prob-

abilistic reasoning. These exogenous variables play a similar role to the Abs we have

used in our logical representations.

Finally, [Pearl, 1988] notes that probabilistic systems are inherently intensional.

Intensional systems are more “Gestalt,” in that a particular unit of meaning depends

intrinsically on other parts of the system. We conjecture that intensional systems will

be more elaboration tolerant than extensional ones, as they intrinsically contain more

of the inferential mechanisms to properly constrain the relationships between various

units of meaning. Extensional representations on the other hand must explicitly

model all of these relationships. This leads to more data that must be examined and

altered in the face of an elaboration. 1

10.4 Neural Networks

In Chapter 3 we argued that an obvious connection between the symbols of the repre-

sentation, and the semantics is important for a representation’s elaboration tolerance.

[McCarthy, 2002b] notes that neural networks are not particularly elaboration toler-

ant. Consider the neural network NETtalk [Sejnowski and Rosenberg, 1988] used for

text-to-speech synthesis, and consider a change where we pronounce the letters “x”

(“sh”) and “q” (“ch”) as Chinese rather than English symbols. A person will only

need to be told these two alterations, while NETtalk would have to revise on the

1For a brief examination of the difference between intensional and extensional systems, see the
beginning of [Perez and Jiroušek, 1985].

130 CHAPTER 10. ELABORATION TOLERANCE AND AI FORMALISMS

order of 18,629 weights, in a manner that requires massive computation (back prop-

agation). NETtalk is not elaboration tolerant as per our discussion in Section 3.2, as

not only are the elaborations not of less complexity than the representation, but they

are not easily predictable – it is not clear what weights need to change in what way

to achieve the desired behavior.

However this example does reveal another issue, which is the modality with which

we can change a representation. We could argue that an extended implementation of

NETtalk, with two extra inputs that can switch the pronunciations of “x” and “q,”

is elaboration tolerant. However, elaboration tolerance is a property that holds over

all possible changes, and not a particular one. A version of NETtalk which had one

input used to toggle every possible elaboration in this domain would be intolerably

large and complex, except perhaps for the simplest (finite?) domains.

Compare this proposed formalism to our S1,Ab, which can represent any change

just by addition of the proper formula! The expressivity of the representation, in the

sense of whether it can represent meta-operations, does effect the ease of elaboration

tolerance. Neural networks do not have this modality (perhaps unless they were

allowed to have feedback loops).

Chapter 11

Elaboration Tolerance and AI

In this chapter we discuss some of the ramifications of elaboration tolerance. The rel-

evance of elaboration tolerance to the future of the logical AI program is discussed in

Section 11.1. We make some correspondences between mechanizing elaborations and

the frame problem in Section 11.2. Section 11.3 attempts to disambiguate between

intensional and extensional representations, mentioning how intensional ones appear

to be primed for elaboration tolerance. We conclude (Section 11.4) with a discussion

of the relationship between elaboration tolerance and nonmonotonic reasoning, and

how it is possible that the former is actually the cause for the latter, instead of the

other way around.

11.1 The Future of Logical AI

[McDermott, 1987] asserts that the logicist tradition of explicitly writing down all

knowledge is doomed. One of McDermott’s reasons is that that there is no clear

sense of when we have written down all common sense knowledge. McDermott notes

that “all the straightforward inferences follow from the axioms that have been written

down.” Cyc [Cyc, 2003] has been criticized by many for failing to capture the whole

of common sense reasoning in logic. Expert systems, once the bread and butter of

AI, are now largely abandoned.

Part of the reason why logical AI has not fared as well as it should is because

131

132 CHAPTER 11. ELABORATION TOLERANCE AND AI

of a view that knowledge is static and completely describable. The mistake is in

assuming that some static knowledge representation will be able to represent the

whole of common sense knowledge. Common sense reasoning is inherently inexact

and incomplete; new “axioms” are discovered by enterprising humans every day!

Furthermore, it is not possible to ever complete the whole of human knowledge; there

are always circumstances which require more details, and retractions of the facts we

believe, as explained previously at the end of Section 1.1. It is a fallacy to assume we

can codify all human reasoning, once and for all.

A workable AI framework must have built within it the ability to accept new

information and retract inconsistencies as necessary. It has to be always extensi-

ble. Instead of formulating “pompous” knowledge representations which believe they

know everything and are always correct, we want “meeker” representations, always

doubting, always ready to accept elaborations of present facts. 1 More formally, our

framework should be able to represent a bit of knowledge, but then immediately and

easily extend to a more detailed representation which can embody new facts while

consistently retaining compatible facts from its previous incarnation. This is the

whole point behind the missionaries and cannibals [McCarthy, 1997] and egg crack-

ing [Morgenstern, 1998] problems, where our representation is encouraged to be able

to tolerate elaborations such as there being a bridge, or cracking an ostrich egg.

11.2 The Frame Problem

Most abstractly, we can characterize our study of how elaborations affect our repre-

sentation in terms of action theories: the elaborations correspond to actions, and the

representation is the state of the world we want to describe. This intuition is reflected

in our desire that formulas should not be affected by an irrelevant elaboration, i.e., a

representational version of the frame problem.

The intuitions become even more interesting when we consider the effects of our

epistemic entrenchments – when a change is required to be made to our knowledge

base, the epistemic entrenchment helps decide which, amongst possible changes, are

1They always said that the meek would inherit the earth.

11.3. INTENSIONAL VERSUS EXTENSIONAL ASPECTS 133

the most likely to be made. This parallels static constraints, which constrain the

trajectory of our system as time progresses. Furthermore, they can also give direction

as to which change is preferred – [McIlraith, 2000] show how a causal interpretation of

material implication used in ramifications is all that is needed to decide how changes

play out.

As we have mentioned many times before, we desire our representation to be

“Cartesian,” where interactions between facts are minimal, so that it is easier for

us to forecast our elaborations and guarantee that the results are as expected. This

notion of a basis set of fluents has popped up in many solutions to the frame problem,

as shown in [Shanahan, 1997].

We have the same problem with elaborations – we want to make sure that our

changes affect the fluents in the correct way. For example, changing the preconditions

on rowing should not affect whether there is a bridge, but it should affect the solution

of the problem. Hence both elaboration tolerance and theories of action are in some

sense heavily reliant on a representation that partitions facts so that they interact

only in understood pre-determined ways. The altered epistemic entrenchments of the

form Ab(`k) =⇒ Ab(`j) described at the end of Section 9.6 comprise a first stab at

this idea.

11.3 Intensional versus Extensional Aspects

Natural language is inherently intensional. Its property of being able to assert facts

without having to tell the whole story seems to be precisely what makes it so elabo-

ration tolerant. Extensional systems on the other hand do not model meanings with

symbols as well, and thus require more infrastructure in order to tolerate elabora-

tions. Part of the reason for this disparity is that while extensional systems treat

the meanings of symbols as fixed, intensional ones can change as new information is

added (consider probabilistic systems).

For extensional systems to compete, they will need a kind of “entry point” by

which to inject elaborations. This is evident in the use of exogenous variables within

Bayesian Networks as well as the introduction of Ab to first-order logic sentences

134 CHAPTER 11. ELABORATION TOLERANCE AND AI

augmented with circumscription as an inference mechanism. In the second case, we

are using Abs to partially reify our formulas, to bring us closer to an intensional kind

of representation.

We can examine the difference on another scale. Consider the rule

has(coffee, sugar) =⇒ tastes fine(coffee). (11.1)

Statements like (11.1) comprise extensional systems because they specify

that as long as has(coffee, sugar), then tastes fine(coffee), without regard to other

factors such as has(coffee, diesel oil) which may negate tastes fine(coffee)

[van Benthem, 1988]. In order for these factors to be represented, the rule above must

be refined and those factors explicitly stated. Intensional systems such as probabilis-

tic statements intrinsically are capable of stating not only what usually holds, but

can allow the inference to change in the presence of updated information. Hence, we

can assert without contradiction P (tastes fine(coffee) | has(coffee, sugar)) = .9 and

P (tastes fine(coffee) | has(coffee, sugar), has(coffee, diesel oil)) = 0, whereas with

the rules we cannot properly assert the dependence of tastes fine(coffee) on

has(coffee, sugar) without talking about has(coffee, diesel oil), unless we use non-

monotonicity.

Intuitively speaking, intensional systems allow for a “background aether” to be

embedded within the representation to allow us to change our statements as necessary.

With extensional systems, on the other hand, there is no aether, only a vacuum, and

what you see is what you get – the symbols encode all the meaning and leave no space

for exceptions, new facts, etc.

[Pearl, 1988] has this same intuition, asserting that “extensional systems” are

modular, in that a rule of the form A→ B means assert B when we see A, regardless

of the other facts known. But the mass of human knowledge is inherently un-modular,

in that a fact will depend on a multitude of facts, which are not even all known. When

human knowledge is encoded in such forms, these myriad relationships are lost. The

reason is because containing all the exceptions, even if possible, would clutter our

statements and make them computationally (and representationally) useless. Instead

11.4. NONMONOTONIC REASONING 135

we attach a special semantics to such rules, inherently adding a “unless otherwise,”

when A is observed assume B. Human language implicitly assumes that almost all

utterances are open to elaboration/are inherently incomplete, and because of this

built-in assumption, can tolerate elaborations. In order to make our representations

have these same properties, we will have to build in this notion of defeasibility, as

accomplished in our system S1,Ab.

11.4 Nonmonotonic Reasoning

[McCarthy, 1997] notes that “Elaboration tolerance clearly requires nonmonotonic

reasoning”, but one may argue that elaboration tolerance is what has generated the

need for nonmonotonic reasoning. The original impetus for nonmonotonic reasoning,

“Tweety is a bird; therefore Tweety flies” had to be nonmonotonic just so that it could

tolerate the elaboration that Tweety is a penguin. It is evident in many approaches

to the frame problem [Shanahan, 1997], and other AI formalisms, as well as human

discourse, that addition of facts is the primary means of changing representations,

which will require nonmonotonic consequence relations.

In fact, viewing some of these representational problems from a perspective of

maximizing elaboration tolerance, instead of properly utilizing nonmonotonic rea-

soning, can provide some fresh, intriguing insights. For example, [McCarthy, 1986]

shows how to write theories so that they are amenable to nonmonotonic reasoning.

One of the examples given is formalizing whether birds can fly.

First, we include the entire theory below, slightly altered to fit our paradigm:

136 CHAPTER 11. ELABORATION TOLERANCE AND AI

(∀x)[¬Ab(1, x) =⇒ ¬Flies(x)]

(∀x)[Bird(x) =⇒ Ab(1, x)]

(∀x)[Bird(x) ∧ ¬Ab(2, x) =⇒ Flies(x)]

(∀x)[Ostrich(x) =⇒ Ab(2, x)]

(∀x)[Penguin(x) =⇒ Ab(2, x)]

(∀x)[Ostrich(x) ∧ ¬Ab(3, x) =⇒ ¬Flies(x)]

(∀x)[Penguin(x) ∧ ¬Ab(4, x) =⇒ ¬Flies(x)]

(∀x)[Bird(x) ∧ ¬Ab(5, x) =⇒ Feathered(x)]

(∀x)[Ostrich(x) =⇒ Bird(x)]

(∀x)[Penguin(x) =⇒ Bird(x)]

(∀x)[Canary(x) =⇒ Bird(x)]

(11.2)

McCarthy’s formalism asserts Ab(aspectn(x)) instead of our Ab(n, x) to assert

that object x is abnormal in aspect n. aspectn(x) is used to distinguish the fact that

objects can be abnormal in different ways, and will affect other fluents differently. For

example, aspect 1 above in the abnormality Ab(1, x) is used to determine whether an

object can fly. Ab(2, x) on the other hand, is used to label that it is strange when an

object (namely, a bird like an ostrich or a penguin) does not fly.

[McCarthy, 1986] circumscribes the theory in (11.2), minimizing Ab and varying

only the predicate Flies. Flies is allowed to vary because “the purpose of the axiom

set is to describe what flies.” This allows us to conclude that the only objects which

fly are birds which are not ostriches or penguins.

McCarthy further notes that allowing Bird, Ostrich, Penguin, and Canary to

vary as well will lead to an empty extension of Ab, as well as empty extensions for

Bird, Flies, Ostrich, Penguin, and Canary. In short, under this circumscription

policy, there are no birds, of any kind, and nothing flies. If witnesses such as

Canary(Tweety) ∧Ostrich(Joe), (11.3)

are added, then circumscription where Ab is minimized and all the predicates

11.4. NONMONOTONIC REASONING 137

varied will lead to the expected conclusion that Tweety flies but Joe does not.

It is distressing that there is no obvious means to discover a circumscription policy

that will entail the correct conclusions. [McCarthy, 1986] gives a partial solution in

terms of policies, where the set of predicates to be minimized and varied is explicitly

listed, but in no way helps us decide how to construct such policies.

It is intriguing to instead look at this same problem through the lenses of elabora-

tion tolerance. [McCarthy, 1986] views the axiomatization in terms of constructing

the right axioms based on Ab and some policy so that the minimizations lead to the

correct nonmonotonic conclusion. Consider if we instead viewed the axioms in (11.2)

as the remnants of conversational rules, where the amount that needed to be said

is minimized (as speakers are lazy), while the number of pertinent facts uttered is

maximal (as speakers, in order to maintain their laziness, must be efficient with their

utterances). We can view the mechanism of nonmonotonicity solely as a means of fill-

ing in the gaps between the speaker’s utterances, a set of communication convention

defaults that allows both speaker and listener to greatly abbreviate their utterances

without loss. The Abs in (11.2) are used to indicate where facts are incomplete, and

later prone to elaboration. (We can think of the Abs as “entry points” for inserting

more preconditions on a rule later on.)

We can reinterpret (11.2) in terms of the simple framework used in Section 4.4 to

motivate our pursuit of additive elaboration tolerance. First off, we see that the last

three axioms in the theory correspond to hard facts, as they omit Ab. The first eight

axioms are soft truths, rewritten as:

(∀x)[Ab(1, x)∨ (¬Flies(x) ∧ ¬Bird(x))]

(∀x)[Ab(2, x)∨ ((Bird(x) =⇒ Flies(x))∧

¬Ostrich(x)∧

¬Penguin(x))]

(∀x)[Ab(3, x)∨ (Ostrich(x) =⇒ ¬Flies(x))]

(∀x)[Ab(4, x)∨ (Penguin(x) =⇒ ¬Flies(x))]

(∀x)[Ab(5, x)∨ (Bird(x) =⇒ Feathered(x))]

(11.4)

Now these axioms are different from the ones we introduced in Section 4.4, as

138 CHAPTER 11. ELABORATION TOLERANCE AND AI

our Abs are parameterized not only over the labels 1, 2, 3, . . . , but over objects in

the domain of the birds theory as well. We can compare this to our construction

in Chapter 6, where Abs may only take labels as arguments. The notation in (11.4)

is more general, and suggests that our separation of formulas might be too severe.

Allowing our Ab labels to be parameterized in this way is a topic we note for future

research.

Moving on, [McIlraith, 2003] notes the constants 1, 2, 3, . . . serve as contexts,

grouping sets of related axioms. Aspect 1 regulates both whether something is a bird

and whether it flies. In terms of our framework, by default we are to assume that

each individual object is not a bird and does not fly. The second axiom in (11.4)

asserts three facts: by default each individual bird flies, and by default objects are

neither ostriches or penguins. As we observed in Example 9.4.1, these three facts are

correlated – if something happens to make one of them false, the other two will be

“retracted” automatically. The reason is that Ab(2, x) will have to hold, and thus

their truth will not matter anymore. It is interesting to see how the correlation derived

with respect to elaboration tolerance relates to McCarthy’s original intentions when

writing these axioms. For example, if a bird does not fly, we become agnostic about

whether it is not an ostrich, or penguin. Conversely, if a specimen is an ostrich, we

become agnostic about whether it flies or not. The last three axioms express three

unrelated soft truths: ostriches do not fly, penguins do not fly, and birds have feathers.

As a brief aside, note that the axioms in (11.4) is different from the alternative

version:

(∀x)[Ab(1)∨ (¬Flies(x) ∧ ¬Bird(x))]

(∀x)[Ab(2)∨ ((Bird(x) =⇒ Flies(x))∧

¬Ostrich(x)∧

¬Penguin(x))]

(∀x)[Ab(3)∨ (Ostrich(x) =⇒ ¬Flies(x))]

(∀x)[Ab(4)∨ (Penguin(x) =⇒ ¬Flies(x))]

(∀x)[Ab(5)∨ (Bird(x) =⇒ Feathered(x))]

(11.5)

where the parameterization within the Abs has been removed. (11.5) asserts that

11.4. NONMONOTONIC REASONING 139

by default each of these facts are true, and we can retract all instances by asserting

one atom Ab(n). The approach in [McCarthy, 1986], that we have depicted in (11.4)

gives finer-grained control over the axioms, allowing the retraction of an instance of

the axiom, rather than the entire rule.

Applying our version of circumscription to (11.4) along with the hard truths of

(11.2), where all symbols are varied and Ab is minimized, would result in there

being no birds, ostriches, and penguins, and nothing would fly, as noted already

in [McCarthy, 1986]. But from the point of the view of our soft truths, which should

be interpreted as true whenever possible, this is precisely what should be inferred.

When the witnesses Tweety and Joe are added, the minimization should deduce the

proper conclusions for each, but still assume that nothing else flies, is a bird, etc. 2

It is important that the last three axioms of (11.2) are hard truths, ensuring

that Tweety and Joe fall into their proper categories. Since these hard truths lack

Abs, they are immune to the pressure from our circumscriptive force. The example

in Section 11 of [McCarthy, 1986] shows what happens if this were not the case.

Consider the theory

(∀x)[Ab(1, x) ∨ (¬Flies(x)) ∧ ¬Bird(x)]

(∀x)[Ab(2, x) ∨ (Bird(x) =⇒ Flies(x))]

(∀x)[Ab(3, x) ∨ (Canary(x) =⇒ Bird(x))]]

Canary(Tweety)

(11.6)

Here, the rule (∀x)[Canary(x) =⇒ Bird(x)] has been softened. This allows a

break in the reasoning, where we cannot infer whether Tweety flies or not, because

we cannot be sure that the inheritance rule Canary(Tweety) =⇒ Bird(Tweety)

applies, as it conflicts with our first default assumption that most things are not birds

and do not fly. McCarthy’s solution here is to introduce prioritized circumscription.

We believe a simpler solution lies in formulating epistemic entrenchments within the

2Note that the axiomatization in (11.5) would result in similar conclusions, under the aforemen-
tioned circumscription. Yet when Tweety and Joe are added, we will also get the correct conclusions
about whether they fly, etc., but will instead remain agnostic about whether anything else flies, is
a bird, etc. These atypicalities serve to instantly render our rules inapplicable. Thus we see the
wisdom of parameterizing the soft truths with respect to individuals.

140 CHAPTER 11. ELABORATION TOLERANCE AND AI

language, say by adding:

(∀x)[Ab(3, x) =⇒ Ab(1, x)] (11.7)

If we let all predicates vary, then the expected conclusion is that Bird(Tweety)∧

Flies(Tweety), as (11.7) expresses our desire that the truth of the third axiom over-

rides that of the first. Note that these epistemic entrenchments are implemented

within the framework of normal circumscription, without requiring any additional

expressive power.

11.5 Computability

We briefly indicated in Section 3.4.3 that the synthetic approach to writing predicates,

while elaboration intolerant, appears to be more computationally practical than the

analytic forms. Since the analytic form ascribes properties and relationships to some

key-like object r, more things can be said (or left unsaid) about r. Synthetic syntax

on the other hand of the form r = f(x) asserts that r is the sum total of all features

of x, and nothing else.

As a more concrete example, consider the simple task of inference. Say we

want to know if a row action occurred at time t0 with cannibal1 participating. If

we used the synthetic syntax to encode our information, we would simply have to

search for instances of Row(cannibal1, ∗, ∗, ∗, t0) in a giant table. This operation is

much faster and less complex than searching for an object r with the properties of

Rowing(r)∧Rower(r, cannibal1)∧Time(r, t0). Intuitively, the analytic form is elab-

oration tolerant precisely because it allows facts to be left unsaid. The synthetic form

on the other hand, must bundle up all related information all at once. 3

But because the analytic form remains agnostic on certain facts, we need more

powerful reasoning in order to fill in these unknown facts as necessary. For example,

consider the following representational problem pointed out by [Fikes, 2003a]. We

3We could assert synthetic facts of the form (∃m)Row(cannibal1,m, bank1, bank2, t0) to defer
having to assert all facts at once, but this form still forces us to assert that there is some object m
participating in the Row, which may already be asserting too much.

11.5. COMPUTABILITY 141

want to express the fact that C1 is equal to C2 ∪ C3 ∪ C4 using RDF, a schema that

requires all facts to be expressed as triples.

We must assert something like:

(union-of C1 (list C2 C3 C4)), (11.8)

where list is defined in terms of standard car/cdr notation as:

(list C2 C3 C4) =def (cons C2 (cons C3 (cons C4 nil))), (11.9)

resulting in the statement

(union-of C1 (cons C2 (cons C3 (cons C4 nil)))). (11.10)

This method of representation clearly has computational issues. (It takes O(n)

to find out if one set is a part of the union of C1, where intuitively it should take

O(1), since C1 should “know” what sets compose it). More importantly, it is not the

most elaboration tolerant form possible. The analytic form of this sentence would be

something like:

(composes C2 C1)

(composes C3 C1)

(composes C4 C1)

(11.11)

This would allow us to easily change what sets are part of the union – simply add

or delete sentences of the above form. However, a stronger closed world assumption

is then required to conclude certain important facts, such as the fact that C2, C3 and

C4 are the only subsets of C1. The more synthetic form in (11.10) does not need this

extra machinery. Hence we suspect that elaboration tolerant structures will require

more powerful consequence relations in order to “fill in the blanks” properly.

Chapter 12

Future Research Directions

There are quite a few avenues for future research from here. As we mentioned before,

S1,Ab was only constructed to pose as a witness for additive elaboration tolerance.

We believe more intricate structures can be constructed using the principles we have

demonstrated here. Section 12.1 evaluates this idea with respect to adding more

expressive elaborations.

Another future research direction which is crucial is a working implementation of

these ideas. Section 12.2 sketches out a possible system.

There are other avenues for research that hail from other fields that could prove

enlightening. Just as database design schemas have provided the foundations for con-

structing design principles for elaboration tolerance, we believe the notion of database

indexing (Section 12.3) could play a role in evaluating our representations. An elab-

oration tolerance Advice Giver is only a nice fruit of our labors from Chapter 3,

described in Section 12.4. We also believe it is important to study probabilistic sys-

tems (Section 12.5), as they seem to embody many of the features we desire for

elaboration tolerance, without running into issues of undecidability. Finally, as we

mentioned at the beginning of this thesis, elaboration tolerant structures will pro-

vide a platform from which we can study the more advanced concepts of approxima-

tion [McCarthy, 2000].

142

12.1. REPRESENTING OTHER ELABORATIONS 143

12.1 Representing Other Elaborations

We have focused on how to add formulas to retract and add formulas to our axioma-

tization, but we have not addressed other elaborations, such as actually adding new

soft and hard facts to our axiomatization. We have shown how to implement some

of these elaborations using the formulas of Elab+(L1,LAb):

1. To add a soft fact φ we add Ab(`) ∨ φ to our axioms.

2. To add a hard fact ψ, we simply add ψ to our axioms.

3. We can change parameters by adding the formula ψ+(x = n,Γ), where x is

some constant and n some new value.

There are other elaborations that could implement some of the possibilities in

[McCarthy, 1997], but for which we will need a more expressive framework:

1. We can add a precondition to a soft fact Ab(`)∨φ by adding ¬Ab(`′)∧Prec =⇒

¬Ab(`). This can be rewritten as Ab(`) ∧ Prec =⇒ Ab(`′), to show that it is

a generalization of ψ+, with Prec = `′ < `.

It could also be rewritten to the form Prec =⇒ (Ab(`) =⇒ Ab(`′)). Under

this interpretation, we see that when Prec holds, label Ab(`) outranks Ab(`′).

2. As shown in Section 11.4, we can extend our Abs to also map over elements

of S1. Elaborations could be applied on instantiations of sentences of the form

Ab(`, x) ∨ φ(x).

3. We could construct a more flexible epistemic entrenchment as mentioned in

Section 9.6. The idea is to remove the ordering relation < in SAb and explicitly

determine an ordering by asserting Ab(`k) =⇒ Ab(`j) instead of our “tempo-

ral” `k > `j. If we could add statements of these forms as elaborations, not only

could we construct our own prioritizations over formulas, but this prioritization

could itself be amended.

This flexibility however may outweigh the benefits, because now we will have to

specify every link of the precedence. There is also some intolerance in the sense

144 CHAPTER 12. FUTURE RESEARCH DIRECTIONS

that once a precedence is set, it cannot be retracted. One possible way out of

this problem is to utilize the system S1,Ab,Ab = SAb ·SAb ·S1 to create retractions

over retractions.

12.2 Implementation of Elaboration Tolerant Sys-

tems

This thesis has two main contributions: a framework and design principles for con-

structing elaboration tolerant structures in general, and a study of the concept of

additive elaboration tolerance. One criticism of this work is that we have designed

“castles in the air,” by formalizing the concept of elaboration tolerance in essentially

second-order logic, which is highly undecidable. In particular, [McDermott, 1987]

points out that nonmonotonic formalisms suffer from the “You can’t find out” and

“You don’t want to know” issues, where it may be undecidable to find nonmonotonic

consequences, and the conclusions resulting from nonmonotonic reasoning are often

too weak to be helpful. While we have proven that our retraction and addition oper-

ators have the desired effect, we have not given any indication of what other formulas

stay true after the elaboration, or if we can even prove what remains the same.

One way to counter these criticisms is to develop a working system with additive

elaboration tolerance. One promising candidate is answer set programming, a clean

formalization of logic programs, that also has some very fast implementations (see

lparse [Syrjänen, 2000] and smodels [Simons, 2000]). Since it is decidable, of course

we will not have the expressivity we desire. In order to represent ψ∅, we not only need

to be able to express φ, but also ¬φ. Since true negation over arbitrary formulas is not

easily accomplished in logic programming, we will have to restrict the form of φ that

is expressible. One possibility is to let φ be of the form P1(x)∧ . . .∧Pn(x) =⇒ Q(x),

where the Pi and Q are atoms. Given this restriction, our building blocks for possible

formulas are of the form:

12.3. DATABASE INDEXING 145

Ab(`) ∨ (P1(x) ∧ . . . ∧ Pn(x) =⇒ Q(x))

Ab(`) ∨ (P1(x) ∧ . . . ∧ Pn(x) ∧ ¬Q(x)),

and

Ab(`) ∧ x < ` =⇒ Ab(x)

(12.1)

representable as logic program statements of the form:

Q(x) :- not Ab(`), P1(x), . . . , Pn(x)

P1(x), . . . , Pn(x),¬Q(x) :- not Ab(`)

and

Ab(x) :- Ab(`), x < `

(12.2)

Showing that these kinds of formulas will have the desired results is a topic for

future research. Note that we could in this case go ahead and generalize the Ab labels

to also parameterize over constants to get added expressivity.

12.3 Database Indexing

The methods of database indexing may be relevant to our study of how to make

elaboration tolerant representations [da Silva, 2003]. Database indexing reflects the

organization of information – a simple, unencumbered index implies that the data is

is arranged similarly. If an index becomes too large, this indicates that the data needs

to be organized further. If two indices refer to the same data, then this could imply

multiple meanings for a particular formula, which in general will muck up elaboration

tolerance. If a formula is not referred to by any index, this means it is either irrelevant

or some meaning is not being properly represented.

The computational complexity of the time it takes to use an index could provide

a metric for the complexity of the accompanying representation.

146 CHAPTER 12. FUTURE RESEARCH DIRECTIONS

12.4 An Elaboration Tolerance Advice Giver

Chimaera [McGuinness et al., 2000] is a system used to create and merge ontologies.

It also can diagnose them, by detecting abnormalities in axioms. [Fikes, 2003b]

points out that a similar device could be built with respect to elaboration tolerance.

We could use the elaboration tolerance-promoting principles discovered in Chapter 3

as a framework to analyze arbitrary representations. The system could be so powerful

as to devise the intended semantics of the representation from the syntax, and based

on this, give advice on how to rewrite the representation to make it more elaboration

tolerant.

12.5 Probabilistic Systems

Probabilistic systems are a monotonic formalism that can be easily elaborated. Con-

sider the statements

Pr(φ | ψ) = 1

Pr(φ | ψ, α) = 0,
(12.3)

While at first we believe something like “ψ =⇒ φ”, after hearing the elaboration

α we instead infer “ψ =⇒ ¬φ.” Note that these two statements are entirely

consistent. Furthermore, these statements are expressed in a monotonic logic (they

only require interpretation of the arithmetic operator over the reals and Bayes rule). 1

In fact we can perpetually elaborate the value of concept X1 as shown below:

1These two statements are comparable to Reiter’s default logic axioms [Reiter, 1980]:

ψ : ¬φ

φ
,
ψ, α :

¬φ
(12.4)

12.5. PROBABILISTIC SYSTEMS 147

{ Pr(X1) = p1,

P r(X1 | X2) = p2,

P r(X1 | X2, X3) = p3,

. . . ,

P r(X1 | X2, . . . , Xn) = pn},

(12.5)

provided each pi remains in the open interval (0, 1). (If we ever set one of the pi to

1 or 0, we are essentially turning it into a hard truth/falsehood, from which there is

no recovery. Forcing 0 < pi < 1 keeps the relationships soft and therefore mutable.)

How is this elaboration tolerance, without nonmonotonicity, possible? The obvi-

ous answer is that the nonmonotonicity is expressed one level deep, within the logic.

α, φ, and ψ are never outright asserted as being true or false by the statements of

Lprob. Quite the opposite, they are simply terms about which relationships between

them are uttered, very much in the analytic style. Our statements stop short of ever

ascribing any particular truth value to the propositions.

The way in which probabilistic statements embed elaboration tolerance inside a

monotonic formalism is intriguing and deserves further examination. We believe this

is due to the underlying semantics: probabilities derive their meaning from sample

spaces; a formula φ’s probability given ψ is defined to be the percentage of the sam-

ple space of where ψ holds where φ is also true. Adding statements of the form

Pr(φ |ψ, τ) = p′ is almost always consistent (exceptions are when some probability is

0 or 1), because the statements of probability constrain the remaining sample space

in such a way that there is always enough “space” for subsequent statements.

By “space” we mean the following concept. Each probability statement of the

form Pr(φ |ψ) = p does not rule out, or cut out, parts of the sample space (unless

p = 0 or p = 1). Instead, it constrains the relative sizes of subspaces: in this case the

space where φ ∧ ψ is true must occupy p percent of the space where ψ holds. The

elaborative statement Pr(φ |ψ, τ) = p′ will then assert that the ratio of the space

where φ, ψ, and τ all hold to the space where ψ ∧ τ hold must be p′ – this does not

affect our constraint that Pr(φ |ψ) = p in the slightest. When p = 0 or p = 1, a part

of the sample space does disappear, and no subsequent probabilistic statement can

148 CHAPTER 12. FUTURE RESEARCH DIRECTIONS

ever “bring it back.”

It is illuminating to compare this probabilistic semantics with our discussion of

semantics in Chapter 3. In both cases we envision a universe of all possible states of

the world, and our semantics relies on the likelihood/existence of all of these possible

states. Any logic-based semantics with a monotonic consequence relation will remove

models as more statements are added. Once we assert α, all those models which

disagree with α are permanently removed.

Compare this subtraction of models for logical semantics with our probabilistic

semantics. Unless a probability is 0 or 1, no part of the sample space is ever removed.

Instead the relative percentages of sample spaces are simply fixed. If our elaborations

follow the form of the statements in (12.5), then all we are doing is constraining the

percentage of X1 overall, then the percentage of X1 in X2, and then the percentage

of X1 ∧ X2 lying in X3, and so forth. All we do is constrain the ratio of spaces

between subsets, possible because our space is “fine” enough to be split up to maintain

arbitrary proportions.

The one catch with the probabilistic approach is that it is descriptive, but not

declarative. We know how our degree of belief changes as we learn various facts, but

we do not know which facts we believe currently, or are most likely. This will require

some computation. Or conversely, given a set of facts that we do believe to hold,

we will have to do mathematical computation in order to work out the likelihood of

such facts. This computation is probably analogous to the nonmonotonic reasoning

required for us to come to conclusions in our logical framework. The difference is that

the first is decidable, while the second, not necessarily so. Probably the reason for

this disparity is that the probabilistic semantics works only over the restricted set of

propositional atoms.

12.6. APPROXIMATE OBJECTS AND ELABORATION TOLERANCE 149

12.6 Approximate Objects and Elaboration Toler-

ance

As mentioned in Section 1.1, using approximate objects in our representations will

require some kind of elaboration tolerance by their nature. In fact, elaboration tol-

erant representations may be absolutely necessary to properly represent approximate

objects and theories, since by nature they are those concepts which are intrinsically

elaboratable.

Appendix A

Proofs

A.1 Proof of Proposition 5.3.1

Proposition 5.3.1 [Properties of |∼ defined by f]. Say Γ |∼ φ ⇐⇒

f(Mod(Γ)) ⊆Mod(φ). Then:

1. |∼ obeys right monotonicity and right conjunction.

2. If f obeys contraction then |∼ obeys inclusion.

3. Say f(X) is defined to be of the form

f(X) =def {x ∈ X | (∀y ∈ X)[R(x, y)]}, (A.1)

for some relation R. Then f satisfies contraction, coherence, and left disjunc-

tion.

4. Say f(X) is defined to be of the form

f(X) =def {x ∈ X | (∀y ∈ X)[¬y < x]} (A.2)

where < is well-founded and transitive (no infinitely descending chains). Then

|∼ satisfies cautious monotonicity.

150

A.1. PROOF OF PROPOSITION 5.3.1 151

Proof. 1. Right monotonicity: Assume Γ |∼ φ ∧ φ ` ψ. In terms of f this means:

f(Mod(Γ)) ⊆Mod(φ))

Mod(φ) ⊆Mod(ψ)
(A.3)

and we want to show that f(Mod(Γ)) ⊆ Mod(ψ). But this is straightforward,

given (A.3).

Right conjunction: this time we assume

f(Mod(Γ)) ⊆Mod(φ)

f(Mod(Γ)) ⊆Mod(ψ)
(A.4)

And want to show that f(Mod(Γ)) ⊆Mod(φ∧ψ). But this is clear as Mod(φ∧

ψ) = Mod(φ) ∩ Mod(ψ).

2. Say f(X) ⊆ X for any X, and φ ∈ Γ. We must show Γ |∼ φ, or that

f(Mod(Γ)) ⊆ Mod(φ). Since φ ∈ Γ, this means that Mod(Γ) ⊆ Mod(φ).

And since f(Mod(Γ)) ⊆Mod(Γ), we are done.

3. Contraction: clearly f(X) ⊆ X by definition in (A.1).

Coherence: Now assume X ⊆ Y , and say z ∈ X ∩ f(Y). We have to show that

z ∈ f(X). Since z ∈ f(Y), this means (∀y ∈ Y)[R(z, y)]. Since X ⊆ Y , we can

weaken this to conclude that (∀y ∈ X)[R(z, y)]. But this fact combined with

the fact that z ∈ X means z ∈ f(X), so we are done.

Left disjunction: say α |∼ φ ∧ β |∼ φ. This means

f(Mod(α)) ⊆Mod(φ)

f(Mod(β)) ⊆Mod(φ)
(A.5)

We need to show that f(Mod(α ∨ β)) ⊆Mod(φ).

It is enough to show that f(Mod(α ∨ β)) ⊆ f(Mod(α)) ∪ f(Mod(β)). Recall

that Mod(α ∨ β) = Mod(α) ∪ Mod(β).

152 APPENDIX A. PROOFS

Let x ∈ f(Mod(α) ∪ Mod(β)), and go ahead and assume that x 6∈ f(Mod(α)),

and try to show that x ∈ f(Mod(β)). x ∈ f(Mod(α) ∪ Mod(β)) means that

x ∈ Mod(α) ∪ Mod(β) and (∀y ∈ Mod(α) ∪ Mod(β))[R(x, y)], but either

x 6∈Mod(α) or ¬(∀y ∈Mod(α))[R(x, y)]. Let us split these up into cases.

Say x 6∈Mod(α). This means x ∈Mod(β). Furthermore,

(∀y ∈ Mod(α) ∪ Mod(β))[R(x, y)]. Hence (∀y ∈ Mod(β))[R(x, y)], and by

definition of f , x ∈ f(Mod(β)).

Now on the other hand suppose ¬(∀y ∈Mod(α))[R(x, y)]. This contradicts the

fact that (∀y ∈Mod(α) ∪ Mod(β))[R(x, y)] so this case is impossible.

4. Cautious monotonicity: assume Γ |∼ φ ∧ Γ |∼ ψ. This means:

f(Mod(Γ)) ⊆Mod(φ)

f(Mod(Γ)) ⊆Mod(ψ),
(A.6)

We need to show that Γ ∪ φ |∼ ψ, or f(Mod(Γ ∪ φ)) ⊆ Mod(ψ). By (A.6), it

is enough to show that f(Mod(Γ ∪ φ)) ⊆ f(Mod(Γ)).

Let x ∈ f(Mod(Γ ∪ φ)). This means x ∈Mod(Γ ∪ φ) and

(∀y ∈ Mod(Γ ∪ φ))[¬y < x]. Hence x ∈ Mod(Γ). All we have to show is

that (∀y ∈ Mod(Γ))[¬y < x]. Say instead there was a y ∈ Mod(Γ) such that

y < x. Let z be the <-minimal element in Mod(Γ) such that z ≤ y < x. Since

x is <-minimal in Mod(Γ ∪ φ), z 6∈ Mod(Γ ∪ φ), which means z 6∈ Mod(φ).

Hence z 6∈ f(Mod(Γ)), which means (∃w ∈Mod(Γ))[w < z], a contradiction to

z being <-minimal. Hence there is no y, and x ∈ f(Mod(Γ)).

A.2 Proof of Proposition 5.3.2

Proposition 5.3.2 [Properties of f defined by |∼]. Let Γ |∼ φ ⇐⇒

f(Mod(Γ)) ⊆Mod(φ). Then:

A.3. PROOF OF PROPOSITION 5.4.1 153

1. Say |∼ obeys Inclusion. Then f obeys contraction on the definable subsets of

M.

Proof. 1. Say for any Γ, Γ ⊆ C(Γ) = Th(f(Mod(Γ))). For the purposes of contra-

diction, assume that in fact f(X) 6⊆ X, for some X. So there is some X and z,

such that z ∈ f(X) ∧ z 6∈ X. Since f is restricted to only definable subsets of

M, this means that there is a B ⊆ L such that X = Mod(B).

By inclusion, we know that B ⊆ Th(f(Mod(B))), or f(Mod(B)) ⊆ Mod(B).

But this contradicts our z ∈ f(Mod(B)) ∧ z 6∈ Mod(B). Hence contraction of

f must hold.

A.3 Proof of Proposition 5.4.1

Proposition 5.4.1 [Supraclassicality]. Let 〈L, `, |∼, Γ〉 be an extended axiomatic

formal system with choice. Then the relations ` and |∼ obey supraclassicality.

Proof.

Γ ` φ ⇐⇒ φ ∈ Th(Mod(Γ))

⇐⇒ (∀m ∈Mod(Γ))[m |= φ]

=⇒ (∀m ∈ f(Mod(Γ)))[m |= φ]

⇐⇒ φ ∈ Th(f(Mod(Γ)))

⇐⇒ Γ |∼ φ

(A.7)

The implication in (A.7) is possible because of the contraction of f .

A.4 Proof of Theorem 5.6.1

Theorem 5.6.1 [Full Retraction Definition is Correct]. Let 〈L, `, |∼, Γ〉 be

an extended axiomatic formal system. Let ψ1, . . . , ψn be any sequence of formulas

from ΨE . Then

154 APPENDIX A. PROOFS

fully-retractable(α, 〈L, `, |∼, Γ〉) =⇒

fully-retractable(α, 〈L, `, |∼, ψn ∪ . . . ∪ ψ1 ∪ Γ〉).
(A.8)

Proof. Say fully-retractable(α, 〈L, `, |∼, Γ〉) holds. This means that:

(∀Ψ ∈ ΨE)[(Ψ ∪ Γ 6 `α) ∧ (Ψ ∪ Γ 6 `¬α)] =⇒

(∃ψ∅ ∈ ΨE)[(ψ∅ ∪ Ψ ∪ Γ |6∼ α) ∧ (ψ∅ ∪ Ψ ∪ Γ |6∼ ¬α)]
(A.9)

Call Ψseq = ψn ∪ . . . ∪ ψ1. Let Ψ0 ∈ ΨE and assume that Ψ0 ∪ Ψseq ∪ Γ 6` α and

Ψ0 ∪ Ψseq ∪ Γ 6` ¬α. We must show that there exists a ψ∅ such that

ψ∅ ∪ Ψ0 ∪ Ψseq ∪ Γ |6∼ α and ψ∅ ∪ Ψ0 ∪ Ψseq ∪ Γ |6∼ ¬α.

Now, we can substitute Ψ0 ∧Ψseq for Ψ in (A.9) to get our conclusion.

A.5 Proof of Theorem 5.6.2

Theorem 5.6.2 [Full Addition Definition is Correct]. Let 〈L, `, |∼, Γ〉 be an

extended axiomatic formal system. Let ψ1, . . . , ψn be any sequence of formulas from

ΨE . Then

fully-addable(α, 〈L, `, |∼, Γ〉) =⇒

fully-addable(α, 〈L, `, |∼, ψn ∪ . . . ∪ ψ1 ∪ Γ〉).
(A.10)

Proof. Say fully-addable(α, 〈L, `, |∼, Γ〉) holds. This means that:

(∀Ψ ∈ ΨE)[Consis(α,Ψ ∪ Γ) =⇒

(∃ψ+ ∈ ΨE)[Consis(ψ+,Ψ ∪ Γ) ∧

(ψ+ ∪ Ψ ∪ Γ |∼ α) ∧

fully-retractable(α, 〈L, `, |∼, ψ+ ∪ Ψ ∪ Γ〉) ∧

Consis(¬α,Ψ ∪ Γ) =⇒ Consis(¬α, ψ+ ∪ Ψ ∪ Γ)]]

(A.11)

Call Ψseq = ψn ∪ . . . ∪ ψ1. Let Ψ0 ∈ ΨE and assume that

A.6. PROOF OF THEOREM 5.6.3 155

Consis(α,Ψ0 ∪ Ψseq ∪ Γ). We must produce a ψ+ such that

1. Consis(ψ+,Ψ0 ∪ Ψseq ∪ Γ)

2. ψ+ ∪ Ψ0 ∪ Ψseq ∪ Γ |∼ α, and

3. fully-retractable(α, 〈L, `, |∼, ψ+ ∪ Ψ0 ∪ Ψseq ∪ Γ〉)

4. Consis(¬α,Ψ0 ∪ Ψseq ∪ Γ) =⇒ Consis(¬α, ψ+ ∪ Ψ0 ∪ Ψseq ∪ Γ)]]

Substitute Ψ0 ∧Ψseq in (A.11) to get our result.

A.6 Proof of Theorem 5.6.3

Theorem 5.6.3 [Full Retraction and Addition Require Infinite Languages].

Let 〈L, `, |∼, Γ〉 be an extended axiomatic formal system with choice which obeys

faithfulness and left logical equivalence, and say there is a non-empty subset L∗ ⊆ L,

which is fully retractable and fully addable in Γ, and not trivially so, for either case.

Then L must have infinitely many formulas.

Proof. Pick some α ∈ L∗. Since it’s not trivially fully retractable, we know for every

Ψ ∈ ΨE , Ψ ∪ Γ 6 `α ∧Ψ ∪ Γ 6 `¬α. Let Ψ be >.

By full retraction there is a formula ψ∅(α,Γ) such that

(ψ∅(α,Γ) ∪ Γ |6∼ α) ∧ (ψ∅(α,Γ) ∪ Γ |6∼ ¬α) (A.12)

For simplicity, let us abbreviate ψ∅(α,Γ) ∪ Γ as Γ0
∅. Supraclassicality applied to

(A.12) results in the inference

Γ0
∅ 6` α ∧ Γ0

∅ 6` ¬α ≡ Consis(¬α,Γ0
∅) ∧ Consis(α,Γ

0
∅) (A.13)

Now by full addition (ψ∅(α,Γ) ∈ ΨE), we know there is a ψ+(α,Γ0
∅) such that

156 APPENDIX A. PROOFS

Consis(ψ+(α,Γ0
∅),Γ

0
∅) ∧

ψ+(α,Γ0
∅) ∪ Γ0

∅ |∼ α ∧

fully-retractable(α, 〈L, `, |∼, ψ+(α,Γ0
∅) ∪ Γ0

∅〉) ∧

Γ0
∅ 6` α =⇒ ψ+(α,Γ0

∅) ∪ Γ0
∅ 6` α

(A.14)

From (A.13) and the last implication of (A.14), we can infer that

ψ+(α,Γ0
∅) ∪ Γ0

∅ 6` α.

We can also show that ψ+(α,Γ0
∅) ∪ Γ0

∅ 6` ¬α – if it did, then

ψ+(α,Γ0
∅) ∪ Γ0

∅ |∼ ¬α by supraclassicality. By Proposition 5.3.1, |∼ satisfies right

conjunction, so

ψ+(α,Γ0
∅) ∪ Γ0

∅ |∼ α∧¬α. Unraveling the definition of |∼ in terms of choice functions,

we see that f(Mod(ψ+(α,Γ0
∅) ∪ Γ0

∅)) ⊆Mod(α∧¬α) = ∅. Since f obeys faithfulness,

Mod(ψ+(α,Γ0
∅) ∪ Γ0

∅) = ∅. Hence this means that ¬(∃m ∈M)[m |= ψ+(α,Γ0
∅) ∪ Γ0

∅].

From (A.14) Consis(ψ+(α,Γ0
∅),Γ

0
∅), which means (∃m ∈ M)[m |= Γ∅ ∧ m 6|=

¬ψ+(α,Γ0
∅)] ≡ (∃m ∈M)[m |= ψ+(α,Γ0

∅) ∪ Γ0
∅], a direct contradiction.

Let us rename ψ+(α,Γ0
∅) ∪ Γ0

∅ = Γ0
+. Since Γ0

+ 6` α and Γ0
+ 6` ¬α, we can apply full

retraction again (as Γ0
+ = ψ+(α,Γ0

∅) ∪ ψ∅(α,Γ) ∪ Γ and ψ+(α,Γ0
∅) ∧ ψ∅(α,Γ) ∈ ΨE).

This results in

ψ∅(α,Γ
0
+) ∪ Γ0

+ |6∼ α ∧ ψ∅(α,Γ
0
+) ∪ Γ0

+ |6∼ ¬α. (A.15)

We can see that this can proceed indefinitely. Define inductively

Γ0
∅ ≡def ψ∅(α,Γ) ∪ Γ

Γ0
+ ≡def ψ+(α,Γ0

∅) ∪ Γ0
∅

Γi+1
∅
≡def ψ∅(α,Γ

i
+) ∪ Γi

+

Γi+1
+ ≡def ψ+(α,Γi+1

∅
) ∪ Γi+1

∅

Γi+1
∅
|6∼ α ∧ Γi+1

∅
|6∼ ¬α

Γi+1
+ |∼ α

(A.16)

Hence Γi
∅ = ψi−1

∅
, ψi−1

+ , . . . , ψ0
∅, ψ0

+, ψ∅(α,Γ), Γ while

Γi
+ = ψi

+, ψ
i−1
∅
, ψi−1

+ , . . . , ψ0
∅, ψ

0
+, ψ∅(α,Γ),Γ, where we abbreviate ψj

∅
= ψ∅(α,Γ

j
+) and

A.7. PROOF OF COROLLARY 5.6.1 157

ψj
+ = ψ+(α,Γj

∅
).

Now instead assume that our L has finitely many formulas. This means that there

are finitely many formulas of the form ψj

∅
, call this number n+1. Now consider what

happens when we have

Γn
+ |∼ α, where

Γn
+ = ψn

+ ∪ ψ
n−1
∅
∪ ψn−1

+ ∪ . . . ψ0
∅ ∪ ψ

0
+ ∪ ψ∅(α,Γ) ∪ Γ

(A.17)

By our inductive argument, ψ∅(α,Γ
n
+) ∪ Γn

+ |6∼ α, but ψ∅(α,Γ
n
+) ∪ Γn

+ =

ψn
∅ , ψ

n
+, ψ

n−1
∅

, ψn−1
+ , . . . ψ0

∅, ψ
0
+, ψ∅(α,Γ),Γ, which is logically equivalent to

ψn
+, ψ

n−1
∅

, ψn−1
+ , . . . ψ0

∅, ψ
0
+, ψ∅(α,Γ),Γ, since there are at most n+ 1 different kinds of

ψ∅. But by definition again, ψn
+, ψ

n−1
∅

, ψn−1
+ , . . . ψ0

∅, ψ
0
+, ψ∅(α,Γ),Γ = Γn

+ and

Γn
+ |∼ α, a contradiction.

A.7 Proof of Corollary 5.6.1

Corollary 5.6.1 [Nonmonotonicity of |∼]. |∼, for the conditions in Theorem 5.6.3

must be nonmonotonic.

Proof. This is by inspection of the workings of Γn
+ and Γn

∅ , where Γn+1
∅

= ψn
∅ ∪ Γn

+,

and while Γn
+ |∼ α, Γn+1

∅
|6∼ α.

A.8 Proof of Proposition 6.2.1

Proposition 6.2.1 [Consequences of f ∗ and g∗]. Let f ∗ and g∗ be as in defini-

tion 6.2.3. then:

1. f ∗ and g∗ satisfy contraction.

2. If f satisfies coherence, so does f ∗. The same goes for g∗.

3. f ∗ satisfies right interchangeability, defined as:

(a, b) ∈ f ∗(w) ∧ (a, c) ∈ w =⇒ (a, c) ∈ f ∗(w). (A.18)

158 APPENDIX A. PROOFS

g∗ satisfies left interchangeability.

4. If f satisfies faithfulness, so does f ∗.

5. If f satisfies φ-reflection for φ ∈ L1, so does f ∗.

Proof. 1. Contraction: f ∗(W) ⊆ W trivially by definition.

2. Right Interchangeability: Say (a, b) ∈ f ∗(W) ∧ (a, c) ∈ W . The first conjunct

allows us to infer that a ∈ f({s | (s, t) ∈ W}). And to show that (a, c) ∈ f ∗(W)

we only need (a, c) ∈ W ∧ a ∈ f({s | (s, t) ∈ W}), which are given.

The proof of Left Interchangeability for g∗ is symmetric.

3. Coherence. We must show that if X ⊆ Y , then X ∩ f ∗(Y) ⊆ f ∗(X). So say

X ⊆ Y and (a, b) ∈ X, f∗(Y). We must show that (a, b) ∈ f ∗(X), or that

(a, b) ∈ X and that a ∈ f({s | (s, t) ∈ X}). The first is given. We just need to

show that a ∈ f({s | (s, t) ∈ X}).

Since X ⊆ Y , {s | (s, t) ∈ X} ⊆ {s | (s, t) ∈ Y }. Since f satisfies coherence,

this means that {s | (s, t) ∈ X} ∩ f({s | (s, t) ∈ Y }) ⊆ f({s | (s, t) ∈ X}). So

it is enough to show that a ∈ {s | (s, t) ∈ X} and a ∈ f({s | (s, t) ∈ Y }).

But this holds, as the first is given, and as (a, b) ∈ f ∗(Y), this means a ∈

f({s | (s, t) ∈ Y }).

4. Faithfulness: Say f ∗(X) = ∅. This means that

{(m1,m2) ∈ X | m1 ∈ f([X]`)} = ∅. (A.19)

This is either because X is empty, in which case we have our conclusion, or

f([X]`) = ∅. By faithfulness of f , this second case is only possible if [X]` is

empty, which is only true when X = ∅.

5. φ-reflection: Let φ be an L1-formula. Say φ,¬φ 6∈ Th(f ∗(X))∧φ,¬φ 6∈ Th(Y)∧

Y ⊆ X. We must show that φ,¬φ 6∈ Th(f ∗(Y)).

A.9. PROOF OF THE UPWARDLY FREE AB LEMMA 159

The assumptions means there are models (m+
1 ,m

+
2), (m−

1 ,m
−
2) ∈ f ∗(X) such

that m+
1 |= φ and m−

1 |= ¬φ. By definition of f ∗, m+
1 ,m

−
1 ∈ f([X]`). There are

also (n+
1 , n

+
2), (n−

1 , n
−
2) ∈ Y such that n+

1 |= φ and n−
1 |= ¬φ, and n+

1 , n
−
1 ∈ [Y]`.

Since Y ⊆ X, [Y]` ⊆ [X]`. From reflection on f we then have that there are

models p+
1 , p

−
1 ∈ f([Y]`).

Since f satisfies coherence, p+
1 , p

−
1 ∈ [Y]`, so that there are p+

2 , p
−
2 such that

(p+
1 , p

+
2), (p−1 , p

−
2) ∈ Y . But then this means (p+

1 , p
+
2), (p−1 , p

−
2) ∈ f ∗(Y).

A.9 Proof of the Upwardly Free Ab Lemma

Upwardly Free Ab Lemma. Let Φ be any L1-theory and Ψ ∈ Elab+(L1,LAb). Say

we have an L1,Ab-structure (m1,m2) such that (m1,m2) |=1,Ab Φ ∪ Ψ ∪ ΓAb, and call

`max the >-highest symbol of Param mentioned in Ψ.

Call Λmax = {` ∈ Param | ` > `max ∈ ΓAb}. Let Λ be a arbitrary subset of Λmax.

Then there is a model (m1,m
∗
2) |=1,Ab Φ ∪ Ψ ∪ ΓAb where m∗

2 looks just like m2

except that Abm
∗

2 = (Abm2 \ Λmax) ∪ Λ. In other words, we can assign the remaining

parameters >-than those mentioned in Ψ arbitrarily to m2’s extension of Ab without

affecting its satisfaction of Φ ∪ Ψ ∪ ΓAb.

Proof. Let (m1,m2) be the model of Φ ∪ Ψ ∪ ΓAb. Construct a copy (m1,m
∗
2) of

(m1,m2) except that Abm
∗

2 = (Abm2 \Λmax) ∪ Λ. We must show that (m1,m
∗
2) |=1,Ab

Φ ∪ Ψ ∪ ΓAb, or:

(m1,m
∗
2) |=1,Ab Φ ∪ Ψ ∪ ΓAb ⇐⇒ m1 |=1 Φ ∧ (m1,m

∗
2) |=1,Ab Ψ ∧m∗

2 |=Ab ΓAb

(A.20)

m1 |=1 Φ as that is given. Similarly m∗
2 |=Ab ΓAb, as Ab is not mentioned in ΓAb,

and that is the only way m∗
2 differs from m2.

Now we must show (m1,m
∗
2) |=1,Ab Ψ. There are three cases, one for each of the

possible forms of statement in Ψ.

160 APPENDIX A. PROOFS

Say φ ∈ L1 is a member of Ψ. Since (m1,m2) |=1,Ab φ, (m1,m
∗
2) |=1,Ab φ, as this

only depends on m1.

Say Ab(`i) ∨ φi is a member of Ψ. Assume (m1,m
∗
2) |=1,Ab ¬φi and show

(m1,m
∗
2) |=1,Ab Ab(`i): (m1,m

∗
2) |=1,Ab ¬φi means m1 |=1 ¬φi, so (m1,m2) |=1,Ab ¬φi.

(m1,m2) |=1,Ab Ψ, so (m1,m2) |=1,Ab Ab(`i). Since `i is mentioned in Ψ and `max is

the >-highest parameter mentioned in Ψ, ¬`i > `max, so `i 6∈ Λmax, so `i ∈ Ab
m∗

2 , and

therefore (m1,m
∗
2) |=1,Ab Ab(`i).

Now consider statements of the form (∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)]. Let

us assume that (m1,m
∗
2) |=1,Ab Ab(`j) ∧ a < `j for some a ∈ |m∗

2|. We must show

(m1,m
∗
2) |=1,Ab Ab(a): Again, ¬`j > `max, so `j 6∈ Λmax and therefore `j 6∈ Λ. Since

(m1,m
∗
2) |=1,Ab Ab(`j) this means `j ∈ Ab

m∗

2 , so that `j ∈ Ab
m2 . Hence (m1,m2) |=1,Ab

Ab(`j). Furthermore, since m2 and m∗
2 do not differ on <, (m1,m2) |=1,Ab a < `j,

from which we can infer (m1,m2) |= Ab(a).

Now a < `j ≤ `max, so a cannot possibly be mentioned in Λmax. But then

a ∈ Abm
∗

2 , as have just shown that a ∈ Abm2 . So (m1,m
∗
2) |=1,Ab Ψ as well, and we

have our model.

A.10 Proof of the Downwardly Free Ab Lemma

Downwardly Free Ab Lemma. Let Φ be any L1-theory and Ψ ∈ Elab+(L1,LAb).

Say we have an L1,Ab-structure (m1,m2) such that (m1,m2) |=1,Ab Φ ∪ Ψ ∪ ΓAb. Call

`max the >-highest symbol of Param mentioned in Ψ.

Let n2 be any LAb-model of ΓAb, such that {a ∈ |m2| | a ≤ `max} ⊆ Abn2. (Note

that this leaves n2 unspecified for elements >-than `max.) Then

(m1, n2) |=1,Ab Φ ∪ Ψ ∪ ΓAb.

Proof. Clearly, (m1, n2) |=1,Ab Φ ∪ ΓAb by definition. We have to verify it remains

true for all versions of Ψ.

If Ψ contains an L1-formula conjunct φ, then (m1, n2) |=1,Ab φ trivially.

If Ψ has a formula of the form Ab(`) ∨ φ, then by definition, ` ≤ `max, so n2 |=2

Ab(`), and (m1, n2) |=1,Ab Ab(`) ∨ φ.

A.11. PROOF OF LEMMA 8.3.1 161

Finally, say Ψ has a formula of the form (∀Ab x)[Ab(`j)∧ x < `j =⇒ Ab(x)]. Say

(m1, n2) |=1,Ab Ab(`j) ∧ a < `j for some a ∈ |n2|. a < `j ≤ `max, so n2 |=Ab Ab(a) and

we are done.

A.11 Proof of Lemma 8.3.1

Lemma 8.3.1 [Every <Ab chain ends]. Let Ψ ∈ Elab+(L1,LAb) and Φ L1-theory.

Say (m0
1,m

0
2) |=1,Ab Ψ ∪ Φ ∪ ΓAb.

Then there exists a (n1, n2) |=1,Ab Ψ ∪ Φ ∪ ΓAb which is Ab-minimal amongst

Mod1,Ab(Ψ ∪ Φ ∪ ΓAb) and n2 ≤Ab m
0
2.

Proof. Call ∆ = Ψ ∪ Φ ∪ ΓAb. We must show that Mod1,Ab(∆) has an Ab-minimal

element:

(∃(n1, n2) ∈Mod1,Ab(∆))(∀(b1, b2) ∈Mod1,Ab(∆))[¬b2 <Ab n2] (A.21)

Let us say instead that it does not, that in fact:

(∀(n1, n2) ∈Mod(∆))(∃(b1, b2) ∈Mod(∆))[b2 <Ab n2] (A.22)

Let X be the set of all models (a1, a2) |= ∆ such that |a2| = |m0
2|, <

a2=<m0

2 ,

`a2 = `m
0

2 for all ` ∈ Param and Aba2 ⊆ Abm
0

2 .

Now, assume that:

Ψ = φ ∧
∧

1≤i≤pAb(`i) ∨ φi ∧
∧

p+1≤j≤r(∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)]

(A.23)

Over this set of elements `1, . . . `r mentioned in Ψ, consider the model (m1,m2) ∈

X with the smallest extension of elements of `1, . . . `r in Abm2 . (m1,m2) satisfies:

162 APPENDIX A. PROOFS

(∀(a1, a2) ∈ X)[¬(Aba2 ∩ {`1, . . . , `r} ⊂ Abm2 ∩ {`1, . . . , `r})] (A.24)

Now from (m1,m2) construct another (m1, n2) such that n2 is the same as m2

except that

Abn2 = Abm2 ∩ {`1, . . . , `r} ∪

{a ∈ |m2| | `j ∈ Ab
m2 ∧ (∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)] ∈ Ψ ∧

(a, `j) ∈<
m2}

(A.25)

In other words, we assert in Abn2 precisely those elements which must be true in

Ψ and no more. By this construction, n2 ≤Ab m2.

Now apply (m1, n2) to our (A.22). First we show that (m1, n2) |=1,Ab ∆.

(m1, n2) |=1,Ab Φ ∪ ΓAb as those parts of the language were unchanged. Showing

(m1, n2) |=1,Ab Ψ is a little more complicated:

(m1, n2) |=1,Ab φ as this only depends on m1 which entails Ψ. If (m1, n2) |=1,Ab

¬φi, then (m1,m2) |=1,Ab ¬φi and (m1,m2) |=1,Ab Ab(`i), which means by definition

(m1, n2) |=1,Ab Ab(`i). As for statements (∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)], say

(m1, n2) |=1,Ab Ab(`j)∧a < `j for some a ∈ |n2| = |m2|. By definition, (m1,m2) |=1,Ab

Ab(`j) ∧ a < `j, and therefore (m1,m2) |=1,Ab Ab(a). From construction of Abn2 we

see that a ∈ Abn2 .

Since n2 ≤Ab m2, and (m1, n2) |=1,Ab ∆, (m1, n2) ∈ X. Now, (A.22) says we can

find a (b1, b2) |=1,Ab ∆ such that b2 <Ab n2. This means b2 ∈ X. Call a ∈ Abn2 \Abb2 .

Now clearly, a does not correspond to a named element (`n2 6= a), because that would

contradict (A.24). Hence it must be some unnamed element, and it must be the

case that `j ∈ Abm2 ∧ (∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)] ∈ Ψ ∧ (a, `j) ∈<
m2 .

Now `j ∈ Abb2 by (A.24), and (a, lj) ∈<
b2 since b2 <Ab n2. Since (b1, b2) |=1,Ab Ψ,

(b1, b2) |=1,Ab Ab(a), but this contradicts the fact that a ∈ Abn2 \ Abb2 .

Hence there must be Ab-minimal elements, and (m1, n2) is one. And n2 ≤Ab m2

by construction, and m2 ≤Ab m
0
2 as they are both in X.

A.12. PROOF OF COROLLARY 8.3.2 163

A.12 Proof of Corollary 8.3.2

Corollary 8.3.2 [g∗ is Non-Empty]. Let Ψ ∈ Elab+(L1,LAb) and Φ a consistent

L1-theory. Furthermore, if Ψ contains a conjunct with a pure L1-formula (Ψ ≡

φ ∧
∧

iAb(`i) ∨ φi ∧
∧

j(∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)]), Φ ∪ φ is consistent.

Then g∗(Mod(Ψ ∪ Φ ∪ ΓAb)) 6= ∅.

Proof. Call ∆ = Ψ ∪ Φ ∪ ΓAb.

g∗(Mod(∆)) = {(m1,m2) ∈Mod(∆) | (∀(n1, n2) ∈Mod(∆))[¬(n2 <Ab m2)]}

(A.26)

To show that g∗(∆) is non-empty, we must show Mod(∆) is non-empty,

and that there is at least one element (m1,m2) ∈Mod(∆) such that

(∀(n1, n2) ∈Mod(∆))[¬(n2 <Ab m2)].

Showing Mod(∆) is non-empty is straightforward. Since Φ ∪ φ is consistent, let

m0
1 be a model of it. Let m0

2 be a Herbrand model of ΓAb, where |m0
2| = Param, < is

defined according to ΓAb. Set Abm
0

2 = |m0
2|. (m0

1,m
0
2) |=1,Ab ∆ trivially.

For the second part, since we have a model of ∆, we can use Lemma 8.3.1 to

produce a witness (m1,m2) |=1,Ab ∆ and (∀(n1, n2) ∈Mod(∆))[¬n2 <Ab m2].

A.13 Proof of the Monotonic Retraction Lemma

Monotonic Retraction Lemma ([g∗(Mod(∆))]` ⊆ [g∗(Mod(∆ ∪ ψ∅))]`). Let Φ be

some L1-theory, Ψ ∈ Elab+(L1,LAb), and ΓAb as defined. Say ∆ = Ψ ∪ Φ ∪ ΓAb.

Let α be a L1-formula and ψ∅ = (Ab(`+)∨α)∧ (Ab(`−)∨¬α), where `+, `− ∈ Param

and are >-than any labels mentioned in Ψ.

Then [g∗(Mod(∆))]` ⊆ [g∗(Mod(∆ ∪ ψ∅))]`.

164 APPENDIX A. PROOFS

Proof. Let (m1,m2) ∈ g
∗(Mod(∆)). We must show that there is some m′

2 such that

(m1,m
′
2) ∈ g

∗(Mod(∆ ∪ ψ∅)). Since (m1,m2) ∈ g
∗(Mod(∆)), this means that:

(m1,m2) |=1,Ab ∆

(∀(n1, n2) |=1,Ab ∆)[¬n2 <Ab m2]
(A.27)

From m2 construct a similar m∗
2, except that

Abm
∗

2 =

Abm2 ∪ {`+} \ {`−} m1 |=1 ¬α

Abm2 ∪ {`−} \ {`+} m1 |=1 α

By construction (m1,m
∗
2) |=1,Ab ψ∅. Also, since `+, `− are symbols greater than

those mentioned in ∆, by the Upwardly Free Ab Lemma, (m1,m
∗
2) |=1,Ab ∆. To show

that (m1,m
∗
2) ∈ g

∗(Mod(∆ ∪ ψ∅)), all we have to show is that

(∀(n1, n2) |=1,Ab ∆ ∪ ψ∅)[¬n2 <Ab m
∗
2] (A.28)

Let (n1, n2) |=1,Ab ∆ ∪ ψ∅, and for the purposes of contradiction, assume that in

fact n2 <Ab m
∗
2. This means that n2 looks just like m∗

2, except that there is some

element ` ∈ Abm
∗

2 and ` 6∈ Abn2 . This element cannot be `+ or `−, because since

only one of them appears in Abm
∗

2 , if it was removed, then it would be impossible for

n2 |=1,Ab ψ∅. So it must be some other element. Hence we can say that

Abn2 \ {`+, `−} ⊂ Abm
∗

2 \ {`+, `−} ⊆ Abm2 . (A.29)

Now consider the structure n∗
2 which is just like n2, except that Abn

∗

2 = Abn2 \

{`+, `−}. By the Upwardly Free Ab Lemma, (n1, n
∗
2) |=1,Ab ∆. Also, we see by

construction that n∗
2 <Ab m2. But this fact contradicts (A.27) that m2 is Ab-minimal

over this set. So it must be the case that (m1,m
∗
2) ∈ g

∗(Mod(∆ ∪ ψ∅)), and therefore

that [g∗(Mod(∆))]` ⊆ [g∗(Mod(∆ ∪ ψ∅))]`.

A.14 Proof of the Full Retractability Lemma

.

A.14. PROOF OF THE FULL RETRACTABILITY LEMMA 165

Full Retractability Lemma. Let ΨE = Elab+(L1,LAb), τ an element of

Elab+(L1,LAb), Φ a consistent L1-theory, and α any L1-formula. Say f , the choice

function underlying S1, satisfies contraction, coherence, faithfulness, and α-reflection.

Then fully-retractable(α, 〈L1,Ab, `1,Ab, |∼1,Ab, τ ∪ Φ ∪ ΓAb〉).

Proof. We need to show that

(∀Ψ ∈ ΨE)[(Ψ ∪ τ ∪ Φ ∪ ΓAb 6`1,Abα) ∧

(Ψ ∪ τ ∪ Φ ∪ ΓAb 6`1,Ab¬α)] =⇒

(∃ψ∅ ∈ ΨE)[(ψ∅ ∪ Ψ ∪ τ ∪ Φ ∪ ΓAb |6∼1,Ab α) ∧

(ψ∅ ∪ Ψ ∪ τ ∪ Φ ∪ ΓAb |6∼1,Ab ¬α)]

(A.30)

Let Ψ be any member of Elab+(L1,LAb), and call ∆ = Ψ ∪ τ ∪ Φ ∪ ΓAb. Let

`+, `− ∈ Param be two fresh symbols not mentioned in Ψ ∪ τ , which are > than

every other Param symbol mentioned. (This is possible as both are finite formulas.)

Take ψ∅ as:

ψ∅ = (Ab(`+) ∨ α) ∧ (Ab(`−) ∨ ¬α) (A.31)

Now we can rewrite (A.30) as:

[f ∗(Mod(∆))]` 6⊆Mod(α) ∧ [f ∗(Mod(∆))]` 6⊆Mod(¬α) =⇒

[f ∗(g∗(Mod(∆ ∪ ψ∅)))]` 6⊆Mod(α) ∧

[f ∗(g∗(Mod(∆ ∪ ψ∅)))]` 6⊆Mod(¬α)

(A.32)

Assume [f ∗(Mod(∆))]` 6⊆ Mod(α) and [f ∗(Mod(∆))]` 6⊆ Mod(¬α). We must

show that [f ∗(g∗(Mod(∆ ∪ ψ∅)))]` 6⊆Mod(α)∧[f ∗(g∗(Mod(∆ ∪ ψ∅)))]` 6⊆Mod(¬α).

By α-reflection, it is enough to show that g∗(Mod(∆ ∪ ψ∅)) ⊆Mod(∆), and that

g∗(Mod(∆ ∪ ψ∅)) 6⊆Mod(α) nor g∗(Mod(∆ ∪ ψ∅)) 6⊆Mod(¬α).

This first is easily shown to be true: g∗(Mod(∆ ∪ ψ∅)) ⊆ Mod(∆ ∪ ψ∅) by

contraction, and Mod(∆ ∪ ψ∅) ⊆Mod(∆).

The second fact is more complicated. For simplicity, we will only prove that

g∗(Mod(∆ ∪ ψ∅)) 6⊆ Mod(α), as the proof for g∗(Mod(∆ ∪ ψ∅)) 6⊆ Mod(¬α) is

166 APPENDIX A. PROOFS

symmetric.

Say instead that g∗(Mod(∆ ∪ ψ∅)) ⊆Mod(α). This means that

(∀(m1,m2) ∈ g
∗(Mod(∆ ∪ ψ∅)))[(m1,m2) |=1,Ab α], (A.33)

or that

(∀(m1,m2) ∈ g
∗(Mod(∆ ∪ ψ∅)))[(m1,m2) |=1,Ab Ab(`

−)] (A.34)

From this we can infer that

(∀(n1, n2) |=1,Ab ∆ ∪ ψ∅)[(n1, n2) |=1,Ab Ab(`
−)], (A.35)

by the following argument: pick any (n1, n2) |=1,Ab ∆ ∪ ψ∅. By Corollary 8.3.1,

there is a (o1, o2) ∈ g∗(Mod(∆ ∪ ψ∅)) such that o2 ≤Ab n2. Since (o1, o2) ∈

g∗(Mod(∆ ∪ ψ∅)), (o1, o2) |=1,Ab α, and therefore (o1, o2) |=1,Ab Ab(`−). Since

o2 ≤Ab n2, this means n2 |=Ab Ab(`
−).

Now recall we assumed that α,¬α 6∈ Th(f ∗(Mod(∆))). This means that

(∃(m−
1 ,m

−
2) ∈ f ∗(Mod(∆)))[(m1,

− ,m−
2) |=1,Ab ¬α]

(∃(m+
1 ,m

+
2) ∈ f ∗(Mod(∆)))[(m1,

+ ,m+
2) |=1,Ab α]

(A.36)

Since f ∗ obeys contraction, (m−
1 ,m

−
2), (m+

1 ,m
+
2) ∈Mod(∆).

Now from m−
2 construct another model m∗

2 such that everything is the same,

except that Abm
∗

2 = (Abm
−

2 \ {`−}) ∪ {`+}. By the Upwardly Free Ab Lemma, we

know that (m−
1 ,m

∗
2) |=1,Ab ∆, since `+, `− are not mentioned in ∆. Furthermore,

(m−
1 ,m

∗
2) |=1,Ab ψ∅(α), as (m−

1 ,m
∗
2) |=1,Ab ¬α ∧ Ab(`

+). But recall that by definition

(m−
1 ,m

∗
2) |=1,Ab ¬Ab(`

−).

But now we have our result that g∗(Mod(∆ ∪ ψ∅)) 6⊆ Mod(α), as (m−
1 ,m

∗
2)

directly contradicts (A.35).

A.15. PROOF OF THE FULL ADDITION THEOREM 167

A.15 Proof of the Full Addition Theorem

Full Addition of S1,Ab Theorem. Let Γ1 be any L1-theory with Υ ⊆ Γ1 a consistent

subset such that Γ1 \ Υ is finite. Set ΨE to be Elab+(L1,LAb). Let f be the choice

function underlying |∼1.

Say f satisfies contraction, coherence, faithfulness, and α-reflection for some L1-

formula α. Then we have fully-addable(α, 〈L1,Ab, `1,Ab, |∼1,Ab, Γ1,Ab(Υ)〉).

Proof. Referring back to (5.17), We must show that

(∀Ψ ∈ ΨE)[Consis(α,Ψ ∪ Γ1,Ab(Υ)) =⇒

(∃ψ+ ∈ ΨE)[Consis(ψ+,Ψ ∪ Γ1,Ab(Υ)) ∧

ψ+ ∪ Ψ ∪ Γ1,Ab(Υ) |∼1,Ab α ∧

fully-retractable(α, 〈L1,Ab, `1,Ab, |∼1,Ab, Γ1,Ab(Υ)〉) ∧

Consis(¬α,Ψ ∪ Γ1,Ab(Υ)) =⇒ Consis(¬α, ψ+ ∪ Ψ ∪ Γ1,Ab(Υ))]]

(A.37)

Take Ψ to be an arbitrary member of Elab+(L1,LAb). Rewriting Ψ ∪ Γ1,Ab(Υ) as

∆, and using the definition of Consis, we end up having to show that:

(∃(m1,m2) ∈ f
∗(Mod(∆)))[(m1,m2) |=1,Ab α] =⇒

(∃ψ+ ∈ ΨE)[(∃(n1, n2) ∈ f
∗(Mod(∆)))[(n1, n2) |=1,Ab ψ+] ∧

(∀(o1, o2) ∈ f
∗(g∗(Mod(ψ+ ∪ ∆))))[(o1, o2) |=1,Ab α] ∧

fully-retractable(α, 〈L1,Ab, `1,Ab, |∼1,Ab, ψ+ ∪ ∆〉) ∧

(∃(p1, p2) ∈ f
∗(Mod(∆)))[(p1, p2) |=1,Ab ¬α] =⇒

(∃(r1, r2) ∈ f
∗(Mod(ψ+ ∪ ∆)))[(r1, r2) |=1,Ab ¬α]]

(A.38)

Call (m1,m2) ∈ f ∗(Mod(∆)) such that (m1,m2) |=1,Ab α. Let `α be a fresh

symbol not mentioned in Ψ ∧ AB(Γ1 \ Υ), which is >-than any other element of

Param mentioned. This is possible as Ψ ∪ AB(Γ1 \Υ) is finite. Define ψ+ as:

ψ+ ≡def (Ab(`α) ∨ α) ∧ (∀Ab x)[Ab(`
α) ∧ x < `α =⇒ Ab(x)] (A.39)

168 APPENDIX A. PROOFS

Note ψ+ ∈ Elab+(L1,LAb). To prove full addition, we have to show four facts:

1. (∃(n1, n2) ∈ f ∗(Mod(∆)))[(n1, n2) |=1,Ab ψ+]: From (m1,m2) construct m∗
2

which is the same as m2, except that Abm
∗

2 = Abm2 \ {`α}. By the Upwardly

Free Ab Lemma, since ∆ = Ψ ∪ Υ ∪ AB(Γ1 \ Υ) ∪ ΓAb, and since `α is

not mentioned in Ψ ∪AB(Γ1 \ Υ), and is > than those labels, we know that

(m1,m
∗
2) ∈ Mod(∆). By Right Interchangeability, (m1,m

∗
2) ∈ f ∗(Mod(∆)).

Finally, by construction (m1,m
∗
2) |=1,Ab ψ+, as (m1,m

∗
2) |=1,Ab α ∧ ¬Ab(`

α).

2. (∀(o1, o2) ∈ f
∗(g∗(Mod(ψ+ ∪ ∆))))[(o1, o2) |=1,Ab α]: First we must show that

f ∗(g∗(Mod(ψ+ ∪ ∆))) is non-empty. By faithfulness of f ∗, it is enough to show

that g∗(Mod(ψ+ ∪ ∆)) is non-empty. ψ+ ∪ ∆ = ψ+ ∪ Ψ ∪ Υ ∪ AB(Γ1 \

Υ) ∪ ΓAb. By Corollary 8.3.2, it is enough to show that Υ combined with the

L1 conjunct φ ∈ Ψ is consistent. But this holds because our given witness

(m1,m2) |=1,Ab ∆.

So now, say (o1, o2) ∈ f ∗(g∗(Mod(ψ+ ∪ ∆))) but (o1, o2) |=1,Ab ¬α. This

means (o1, o2) |=1,Ab Ab(`
α) ∧ (∀Ab x)[x < `α =⇒ Ab(x)]. Also, (o1, o2) ∈

g∗(Mod(ψ+ ∪ ∆)) by contraction of f ∗, so that (o1, o2) obeys:

(∀(a1, a2) ∈Mod(ψ+ ∪ ∆))[¬(a2 <Ab o2)]

≡ (∀(a1, a2))[((a1, a2) |=1,Ab ψ+ ∪ ∆ ∧

|a2| = |o2|∧ <
a2=<o2 ∧

(∀` ∈ Param)[`a2 = `o2]∧

Aba2 ⊆ Abo2) =⇒

Aba2 = Abo2]

(A.40)

With this information about (o1, o2) we can construct a counter-model to (A.40).

Define o∗2 to be the same as o2, except Abo
∗

2 = Abo2\{`α}. Note that if `max is the

highest symbol mentioned in Ψ, o∗2 satisfies (∀Ab x)[x ≤ `max =⇒ Ab(x)]. Now

consider the model (m1, o
∗
2). (m1, o

∗
2) |=1,Ab α ∧ ¬Ab(`

α), so (m1, o
∗
2) |=1,Ab ψ+.

By the Downwardly Free Ab Lemma, (m1, o
∗
2) |=1,Ab ∆.

A.16. PROOF OF THEOREM 9.2.1 169

Now, from the construction of o∗2, we see that (m1, o
∗
2) satisfies the antecedent

of (A.40), which means that Abo
∗

2 = Abo2 , a contradiction.

Therefore (o1, o2) |=1,Ab α.

3. fully-retractable(α, 〈L1,Ab, `1,Ab, |∼1,Ab, ψ+ ∪ ∆〉):

By the Full Retractability Lemma, all we have to show is that ψ+ ∪ ∆ is of the

proper form. ψ+ ∈ Elab
+(L1,LAb), ∆ = Ψ ∪ Υ ∪ AB(Γ1 \Υ) ∪ ΓAb is also of

the correct form as Υ is an L1-theory, and Ψ ∧ AB(Γ1 \ Υ) ∈ Elab+(L1,LAb),

being finite.

4. (∃(p1, p2) ∈ f
∗(Mod(∆)))(p1, p2) |=1,Ab ¬α] =⇒

(∃(r1, r2) ∈ f ∗(Mod(ψ+ ∪ ∆)))[(r1, r2) |=1,Ab ¬α]. Since Mod(ψ+ ∪ ∆) ⊆

Mod(∆), coherence lets us know that

Mod(ψ+ ∪ ∆) ∩ f ∗(Mod(∆)) ⊆ f ∗(Mod(ψ+ ∪ ∆)) (A.41)

Hence, it is enough to show that for some p∗2, (p1, p
∗
2) ∈ Mod(ψ+ ∪ ∆) ∩

f ∗(Mod(∆)). Let p∗2 be like p2, except Abp
∗

2 = |p∗2|. Since (p1, p2) ∈ Mod(∆),

by the Downwardly Free Ab Lemma (p1, p
∗
2) ∈ Mod(∆), but also (p1, p

∗
2) ∈

Mod(ψ+).

To show (p1, p
∗
2) ∈ f

∗(Mod(∆)), it is enough to show that p1 ∈ f([Mod(∆)]`),

which holds by assumption.

A.16 Proof of Theorem 9.2.1

Theorem 9.2.1 [Satisfiability is Preserved]. Let S1 = 〈L1, `1, |∼1, Γ1〉 be an

extended axiomatic formal system with choice. Say that Υ ⊆ Γ1 is satisfiable. Then

the combined system S1,Ab has an L1,Ab-model.

170 APPENDIX A. PROOFS

Proof. We must show that there is a model of Γ1,Ab(Υ) = Υ ∪ AB(Γ1 \Υ) ∪ ΓAb. Let

m1 be the L1-model of Υ. Let m2 be a model of ΓAb, with Abm2 = |m2|. We argue

that (m1,m2) |=1,Ab Γ1,Ab(Υ):

(m1,m2) |=1,Ab Υ by construction of m1, and (m1,m2) |=1,Ab ΓAb because of m2’s

construction. Finally, (m1,m2) |= AB(Γ1 \Υ) trivially as Ab is universally true.

A.17 Proof of Theorem 9.2.2

Theorem 9.2.2 [Hard Truths are Preserved by Hard Consequence]. Let α

be an L1-formula and say Υ ⊆ Γ1 and Υ `1 α. Then Γ1,Ab(Υ) `1,Ab α.

Proof. We need to show that Υ ∪ AB(Γ1 \ Υ) ∪ ΓAb `1,Ab α. Let (m1,m2) ∈

f ∗(Mod(Υ ∪ AB(Γ1 \ Υ) ∪ ΓAb)). We must show (m1,m2) |=1,Ab α. We are given

that (∀(a1, a2) |=1,Ab Υ)[(a1, a2) |=1,Ab α]. By contraction, f ∗(Mod(Υ ∪ AB(Γ1 \

Υ) ∪ ΓAb)) ⊆Mod(Υ ∪ AB(Γ1 \Υ) ∪ ΓAb) ⊆Mod(Υ), so this follows.

A.18 Proof of Lemma 9.2.1

Lemma 9.2.1 [g∗’s Behavior when Γ1 is satisfiable.]. Say Γ1 is satisfiable. Then

(m1,m2) ∈ g
∗(Mod(Γ1,Ab(Υ))) ⇐⇒ m1 |=1 Γ1 ∧

Abm2 = ∅ ∧

m2 |=2 ΓAb

(A.42)

Proof. →: Assume (m1,m2) ∈ g
∗(Mod(Γ1,Ab(Υ))). It is enough to show that Abm2 =

∅ and m2 |=1,Ab ΓAb, as since we are given that (m1,m2) |=1,Ab Υ ∪ AB(Γ1 \ Υ),

Abm2 = ∅ means (m1,m2) |=1,Ab Γ1.

By contraction of g∗, (m1,m2) |=1,Ab Υ ∪ AB(Γ1 \Υ) ∪ ΓAb. Hence we automat-

ically get that m2 |=1,Ab ΓAb. From the definition of g∗ we know that

(∀(a1, a2) ∈Mod(Γ1,Ab(Υ)))[¬a2 <Ab m2] (A.43)

A.19. PROOF OF THEOREM 9.2.3 171

Now say instead there is some ` such that that (m1,m2) |=1,Ab Ab(`). Consider an

L1-structure n1 such that n1 |=1 Γ1. Let n2 be the same as m2, except that Abn2 = ∅.

(n1, n2) |=1,Ab Γ1 ∧ ΓAb, so (n1, n2) |=1,Ab Γ1,Ab(Υ).

But clearly, (n1, n2) applied to (A.43) results in a contradiction, as n2 <Ab m2.

Hence we must conclude that in fact Abm2 = ∅.

←: Say (m1,m2) |=1,Ab Γ1 and Abm2 = ∅ and m2 |=2 ΓAb. We must show that

(m1,m2) |=1,Ab Γ1,Ab(Υ), which is clear, and that (A.43) holds. So let (a1, a2) ∈

Mod(Γ1,Ab(Υ)). But say in fact that a2 <Ab m2. This entails that Aba2 ⊂ Abm2 = ∅,

which is impossible.

A.19 Proof of Theorem 9.2.3

Theorem 9.2.3 [Preservation of Soft Formulas]. Let α be an L1-formula. Say

Γ1 is satisfiable and that Γ1 |∼1 α. Then Γ1,Ab(Υ) |∼1,Ab α.

Proof. We are given that:

(∀m1 ∈ f(Mod(Γ1)))[m1 |=1 α] (A.44)

Let (n1, n2) ∈ f
∗(g∗(Mod(Γ1,Ab(Υ)))). We must show that (n1, n2) |=1,Ab α. It is

enough to show that [f ∗(g∗(Mod(Γ1,Ab(Υ))))]
`
⊆ f(Mod(Γ1)). This means we have

to show that (a, b) ∈ f ∗(g∗(Mod(Γ1,Ab(Υ)))) =⇒ a ∈ f(Mod(Γ1)), or unraveling the

definition of f ∗:

[(a, b) ∈ g∗(Mod(Γ1,Ab(Υ)))∧

a ∈ f({s | (s, t) ∈ g∗(Mod(Γ1,Ab(Υ)))})] =⇒ a ∈ f(Mod(Γ1))
(A.45)

With (A.45), it is enough to show that{s | (s, t)∈ g∗(Mod(Γ1,Ab(Υ)))}=Mod(Γ1).

⊆: Say (s, t) ∈ g∗(Mod(Γ1,Ab(Υ))). Then by Lemma 9.2.1, we get s |=1 Γ1.

⊇: Say s |=1 Γ1. Let t be an LAb-structure which is a model of ΓAb such that

Abt = ∅. Then again by Lemma 9.2.1 we see that (s, t) ∈ g∗(Mod(Γ1,Ab(Υ))).

172 APPENDIX A. PROOFS

A.20 Proof of Corollary 9.3.1

Corollary 9.3.1 [Classical FOL Has Full Retraction and Addition]. Let Γ1 be

a theory in some first-order language L1. Say Υ ⊆ Γ1 is some consistent subset such

that Γ1 \ Υ is finite. Then the system 〈L1,Ab, `1,Ab, |∼1,Ab, Γ1,Ab(Υ)〉 where f = 1

has full retraction and full addition, for any α ∈ L1.

Proof. All we have to show is that f = 1 satisfies coherence, contraction, faithfulness

and α-reflection for arbitrary α ∈ L1.

1. Coherence: 1(X) = X ⊆ X.

2. Contraction: Say X ⊆ Y . X ∩ 1(Y) = X ∩ Y ⊆ 1(X) = X.

3. Faithfulness: Say 1(X) = ∅. Then X = ∅.

4. α-reflection: Say Y ⊆ X, α,¬α 6∈ Th(1(X)), and α,¬α 6∈ Th(Y). Then

trivially α,¬α 6∈ Th(1(Y)).

A.21 Proof of Corollary 9.3.2

Corollary 9.3.2 [Preferential Semantics and Full Retraction and Addition].

Let 〈L1, `1, |∼1, Γ1(Υ)〉 be an extended axiomatic formal system with choice function

f . Say f(X) =def {w ∈ X | (∀x ∈ X)[x ≤ w =⇒ x = w]} for some well-founded

relation ≤. Furthermore assume that f satisfies α-reflection.

Say Υ ⊆ Γ1 is some consistent subset such that Γ1 \Υ is finite. Then the system

〈L1,Ab, `1,Ab, |∼1,Ab, Γ1,Ab(Υ)〉 has full retraction and full addition for α.

Proof. All we have to show is that f satisfies coherence, contraction, and faithfulness.

The first two properties hold by Proposition 5.3.1 for item 3.

As for faithfulness, say f(X) = ∅. This is either becauseX = ∅, or (∀w ∈ X)(∃x ∈

X)[x ≤ w =⇒ x 6= w]. But this contradicts the well-foundedness of ≤.

A.22. PROOF OF THE [F ∗]`-EQUIVALENCE LEMMA 173

A.22 Proof of the [f ∗]`-Equivalence Lemma

[f ∗]`-Equivalence Lemma. Say that [X]` = [Y]`. Then [f ∗(X)]` = [f ∗(Y)]`.

Proof. Without loss of generality it is enough to show that [f ∗(X)]` ⊆ [f ∗(Y)]`. Say

a ∈ [f ∗(X)]`, This means that (a, b) ∈ f ∗(X), or that (a, b) ∈ X and a ∈ f([X]`).

To show a ∈ [f ∗(Y)]`, we must show that (a, d) ∈ f ∗(Y) for some d. This means

that we must have that (a, d) ∈ Y and a ∈ f ∗([Y]`) for some d. But these both hold

because [X]` = [Y]`: the first because (a, b) ∈ X means a ∈ [X]` so that a ∈ [Y]` and

so for some d, (a, d) ∈ Y . The second fact follows by substitution.

A.23 Proof of Theorem 9.7.1

Lemma A.23.1 (Restricting models to Param). Let Ψ be a set of sentences of

the form:

φ, where φ ∈ L1

Ab(`) ∨ φ, where φ ∈ L1, and ` ∈ Param

(∀Ab x)[Ab(`) ∧ x < ` =⇒ Ab(x)] where ` ∈ Param

(A.46)

If (m1,m2) |=1,Ab Ψ ∪ ΓAb then m1,m
′
2 |=1,Ab Ψ ∪ ΓAb, where m′

2 is just like

m2, except its interpretation is restricted to symbols of Param. In other words,

|m′
2| = {`

m2 | ` ∈ Param}.

Proof. Go ahead and assume (m1,m2) |=1,Ab Ψ ∪ ΓAb. It is clear that (m1,m
′
2) |=1,Ab

ΓAb.

For each φ ∈ Ψ, we know that m1,m
′
2 |=1,Ab φ as it only depends on m1.

For each Ab(`) ∨ φ ∈ Ψ, if (m1,m2) |=1,Ab Ab(`) ∨ φ, then so does (m1,m
′
2) – say

if m1 |=1 ¬φ, then m2 |=Ab Ab(`), and then m′
2 |=Ab Ab(`) as well.

Finally, for each (∀Ab x)[Ab(`) ∧ x < ` =⇒ Ab(x)] ∈ Ψ, assume (m1,m2) |=1,Ab

(∀Ab x)[Ab(`)∧ x < ` =⇒ Ab(x)] ∈ Ψ, and show (m1,m
′
2) |=1,Ab (∀Ab x)[Ab(`)∧ x <

` =⇒ Ab(x)] ∈ Ψ. Say (m1,m
′
2) |=1,Ab Ab(`) ∧ a < ` for some a ∈ |m′

2|. Hence

174 APPENDIX A. PROOFS

m2 |=Ab Ab(a). Now, a = `m2

0 for some `0 ∈ Param, so a ∈ |m′
2|, and therefore

m′
2 |=Ab Ab(a).

Lemma A.23.2 (Mod(Σ) ⊆ Mod(Compaction1(Σ))). Let Σ be as described in

(9.13).

Mod(Σ) ⊆Mod(Compaction1(Σ)) (A.47)

Proof. Say (m1,m2) |=1,Ab Σ. We only need to show that (m1,m2) |=1,Ab Ab(`k) =⇒

Ab(`) for any k ∈ K ∧ ` ∈ Σ such that ` < `k ∈ ΓAb.

So go ahead and assume that (m1,m2) |=1,Ab Ab(`k). This means that

(m1,m2) |=1,Ab (∀Ab x)[x < `k =⇒ Ab(x)]. Since ` < `k ∈ ΓAb, (m1,m2) |=1,Ab ` <

`k, so (m1,m2) |=1,Ab Ab(`).

Lemma A.23.3 ([g∗(Mod(Ψ′ ∪ Σ))]` = [g∗(Mod(Ψ′ ∪ Compaction1(Σ)))]`). Let Σ

be of the form above, and Ψ′ ∈ Elab+(L1,LAb). Then

[g∗(Mod(Ψ′ ∪ Σ))]` = [g∗(Mod(Ψ′ ∪ Compaction1(Σ)))]`, (A.48)

Proof. ⊆: Say (m1,m2) ∈ g∗(Mod(Ψ′ ∪ Σ)). We must show that (m1,m
∗
2) ∈

g∗(Mod(Ψ′ ∪ Compaction1(Σ))) for some m∗
2. Define the LAb-structure m∗

2 to be

the same as m2, except |m∗
2| = {`

m2 | ` ∈ Param}.

We are given that

(m1,m2) |=1,Ab Ψ′ ∪ Σ, and

(∀(n1, n2) |=1,Ab Ψ′ ∪ Σ)[¬n2 <Ab m2]
(A.49)

We must show that

1. (m1,m
∗
2) |=1,Ab Ψ′ ∪ Compaction1(Σ) and

2. (∀(o1, o2) |=1,Ab Ψ′ ∪ Compaction1(Σ))[¬o2 <Ab m
∗
2].

The first task is straightforward. (m1,m
∗
2) |=1,Ab Ψ′ ∪ Σ by Lemma A.23.1. Then

by Lemma A.23.2 we know that (m1,m
∗
2) |=1,Ab Ψ′ ∪ Compaction1(Σ).

A.23. PROOF OF THEOREM 9.7.1 175

As for the second item, assume instead there is some

(o1, o2) |=1,Ab Ψ′ ∪ Compaction1(Σ) but in fact, o2 <Ab m
∗
2. Call `∗ the >-largest

element in Abm
∗

2 \ Abo2 which must be an element of Param. Construct o∗2 to be

the same as m2, except Abo
∗

2 = Abm2 \ `∗. Clearly o∗2 <Ab m2. If we can show

(o1, o
∗
2) |=1,Ab Ψ′ ∪ Σ then we are done, because this contradicts the fact that (m1,m2)

is Ab-minimal as per (A.49).

There are three kinds of formulas in Ψ′∪ Σ:

1. If φ ∈ Ψ′∪ Σ then φ ∈ Ψ′ ∪ Compaction1(Σ), so that (o1, o
∗
2) |=1,Ab φ as o1 |=1 φ

from our assumption.

2. IfAb(`i)∨φ ∈ Ψ′∪ Σ, thenAb(`i)∨φ ∈ Ψ′∪ Compaction1(Σ), and if (o1, o
∗
2) |=1,Ab

¬φ, (o1, o2) |=1,Ab ¬φ, so (o1, o2) |=1,Ab Ab(`i). Abo2 ⊂ Abm
∗

2 ⊆ Abm2 , so

m2 |=Ab Ab(`i). The only way o∗2 6|=Ab Ab(`i) is if `i = `∗. But this would

mean that o2 |=Ab ¬Ab(`i). But (o1, o2) |=1,Ab Ab(`i) ∨ φ which means o1 |=1 φ,

a contradiction.

3. If (∀Ab x)[Ab(`j)∧x < `j =⇒ Ab(x)] ∈ Ψ′ ∪ Σ. Say (o1, o
∗
2) |=1,Ab Ab(`j)∧a <

`j for some a ∈ |o∗2|. We need to show that (o1, o
∗
2) |=1,Ab Ab(a). Since o∗2 looks

just like m2, and o∗2 <Ab m2, we know that m2 |=Ab Ab(`j) ∧ a < `j, and hence

m2 |=Ab Ab(a).

To show o∗2 |= Ab(a) it is enough to show that a 6= `∗. Say in fact it was.

Since m2 |=Ab Ab(`j) ∧ `
∗ < `j, so will m∗

2 |=Ab Ab(`j) ∧ `
∗ < `j. ΓAb ⊆

Compaction1(Σ) is complete, so we know that `∗ < `j ∈ ΓAb, and since

(o1, o2) |= Ψ′ ∪ Compaction1(Σ), so (o1, o2) |= Ab(`j) =⇒ Ab(`∗). Since

o2 |=Ab ¬Ab(`
∗), o2 |=Ab ¬Ab(`j). But note that we have shown that m2 |=Ab

Ab(`j), so that `j ∈ Abm
∗

2 \ Abo2 , but that contradicts the fact that `∗ is the

>-largest element in Abm
∗

2 \ Abo2 .

⊇: Say (m1,m2) ∈ g
∗(Ψ′ ∪ Compaction1(Σ)). We need to show that (m1,m

∗
2) ∈

g∗(Ψ′ ∪ Σ) for some m∗
2. We are given that

(m1,m2) |=1,Ab Ψ′ ∪ Compaction1(Σ)

(∀(n1, n2) |=1,Ab Ψ′ ∪ Compaction1(Σ))[¬n2 < m2]
(A.50)

176 APPENDIX A. PROOFS

We must show that

1. (m1,m
∗
2) |=Ab Ψ′ ∪ Σ and

2. (∀(o1, o2) |=1,Ab Ψ′ ∪ Σ)[¬o2 <Ab m
∗
2]

Define m∗
2 to look like m2, except restricted to the domain of Param: |m2|

∗ =

{`m2 | ` ∈ Param}. Let us show that (m1,m
∗
2) |=Ab Ψ′ ∪ Σ first. There are three

kinds of formulas in Ψ′ ∪ Σ:

1. Say φ ∈ Ψ′ ∪ Σ. Then φ ∈ Ψ′ ∪ Compaction1(Σ), and since (m1,m2) |=1,Ab

Ψ′ ∪ Compaction1(Σ), m1 |=1 φ, so (m1,m
∗
2) |=1 φ.

2. Say Ab(`i) ∨ φi ∈ Ψ′ ∪ Σ. Ab(`i) ∨ φi ∈ Ψ′ ∪ Compaction1(Σ), and so

(m1,m2) |=1,Ab Ab(`i) ∨ φi. We need to show (m1,m
∗
2) |=1,Ab Ab(`i) ∨ φi, so as-

sume (m1,m
∗
2) |=1,Ab ¬φi. Hence (m1,m2) |=1,Ab ¬φi, and thus (m1,m2) |=1,Ab

Ab(`i). a ∈ Ab
m∗

2 ⇐⇒ a ∈ Abm2 ∧a = `m2 , so we can infer that (m1,m
∗
2) |=1,Ab

Ab(`i).

3. Say (∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)] ∈ Ψ′ ∪ Σ. Say (m1,m
∗
2) |=1,Ab

Ab(`j) ∧ a < `j for some a ∈ |m∗
2|. Since a ∈ |m∗

2|, there must be some

`a ∈ Param such that `m2

a = a. We can also say that m2 |=Ab Ab(`j) ∧ `a < `j.

We need to show that (m1,m
∗
2) |=1,Ab Ab(`a). There are two cases:

(a) (∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)] ∈ Ψ′: This means (m1,m2) |=1,Ab

(∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)]. Hence (m1,m2) |=1,Ab Ab(`a). Then

by the definition of m∗
2, (m1,m

∗
2) |=1,Ab Ab(`a).

(b) (∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)] ∈ Σ: Since m2 |=Ab Ab(`j) ∧ `a < `j,

and ΓAb is complete we know that `a < `j ∈ ΓAb, and thus that Ab(`j) =⇒

Ab(`a) ∈ Compaction1(Σ). Hence m2 |=Ab Ab(`a), and therefore m∗
2 |=Ab

Ab(`a).

Now suppose that (o1, o2) |=1,Ab Ψ′ ∪ Σ but o2 <Ab m
∗
2. By Lemma A.23.2, we

know that (o1, o2) |=1,Ab Ψ′ ∪ Compaction1(Σ). Let `∗ be the >-largest element of

A.23. PROOF OF THEOREM 9.7.1 177

Param mentioned in Abm
∗

2 \Abo2 . From o2 construct o∗2 which is just like m2, except

Abo
∗

2 = Abm2 \ {`∗}. o∗2 <Ab m2. If we can show that (o1, o
∗
2) |= Ψ′ ∪ Compaction1(Σ)

we have reached a contradiction and are done.

There are four kinds of formulas in Ψ′ ∪ Compaction1(Σ):

1. φ ∈ Ψ′ ∪ Compaction1(Σ). We can infer that φ ∈ Ψ′ ∪ Σ, so that (o1, o2) |=1,Ab

φ, so that so does (o1, o
∗
2) |=1,Ab φ since it only depends on m1.

2. Ab(`i) ∨ φi ∈ Ψ′ ∪ Compaction1(Σ) and so Ab(`i) ∨ φi ∈ Ψ′ ∪ Σ, and therefore

(o1, o2) |=1,Ab Ab(`i)∨φi. To show (o1, o
∗
2) |=1,Ab Ab(`i)∨φi, assume (o1, o

∗
2) |=1,Ab

¬φi, so that o2 |=Ab Ab(`i). Since o2 <Ab m2∗, and m2 is just m∗
2 restricted to

Param, we can infer that m2 |=Ab Ab(`i). The only way o∗2 6|=Ab Ab(`i) is if

`i = `∗. But then this would mean that o2 |=Ab ¬Ab(`i), and thus that o1 |=1 φ,

a contradiction.

3. (∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)] ∈ Ψ′ ∪ Compaction1(Σ) means that

(∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)] ∈ Ψ′.

So we know that (o1, o2) |=1,Ab (∀Ab x)[Ab(`j) ∧ x < `j =⇒ Ab(x)]. Say

(o1, o
∗
2) |=1,Ab Ab(`j) ∧ a < `j for some a ∈ o∗2. We want to show that o∗2 |=Ab

Ab(a). Since o∗2 <Ab m2, we know that m2 |=Ab Ab(`j) ∧ a < `j. (m1,m2) |=1,Ab

Ψ′, so m2 |=Ab Ab(a). Now we just have to show that a 6= `∗m2 to show that

o∗2 |=Ab Ab(a). Say it was. Then since `j 6= `∗, o2 |=Ab Ab(`j) ∧ `
∗ < `j, and

therefore o2 |=Ab Ab(`
∗). But this contradicts the definition of `∗.

4. Ab(`k) =⇒ Ab(`) ∈ Ψ′ ∪ Compaction1(Σ). This means there was some

(∀Ab x)[Ab(`k) ∧ x < `k =⇒ Ab(x)] ∈ Σ and ` < `k ∈ ΓAb. We must show

that (o1, o
∗
2) |=1,Ab Ab(`k) =⇒ Ab(`). So assume o∗2 |=Ab Ab(`k). Hence

m2 |=Ab Ab(`k), and thus m2 |=Ab Ab(`) since (m1,m2) |=1,Ab Compaction1(Σ).

If we can show ` 6= `∗, we are done. So assume not. Then o2 |=Ab ¬Ab(`
∗),

and since o2 |=Ab `
∗ < `k, we must infer that o2 |=Ab ¬Ab(`k). Also m∗

2 |=Ab `k.

Hence `k ∈ Ab
m∗

2 \Abo2 , and `∗ < `k, but this contradicts the fact that `∗ is the

>-largest element in Abm
∗

2 \ Abo2 .

178 APPENDIX A. PROOFS

Theorem 9.7.1 [Compaction1 equivalent to Σ under elaborations]. Let Σ be of

the form above. Then for any Ψ′ ∈ Elab+(L1,LAb) and φ ∈ L1, we have:

Ψ′ ∪ Σ |∼1,Ab φ ⇐⇒ Ψ′ ∪ Compaction1(Σ) |∼1,Ab φ (A.51)

Proof. It is enough to show that [f ∗(g∗(Ψ′ ∪ Σ))]` = [f ∗(g∗(Ψ′ ∪ Compaction1(Σ)))]`.

From the [f ∗]`-Equivalence Lemma it is enough to show that

[g∗(Ψ′ ∪ Σ)]` = [g∗(Ψ′ ∪ Compaction1(Σ))]`, (A.52)

But this holds thanks to Lemma A.23.3.

Note that by example 4.4.1, [g∗(Mod(∆))]` ⊇ [g∗(Mod(∆ ∪ ψ∅))]` does not gen-

erally hold.

A.24 Proof of the ψ+ Covering Lemma

ψ+ Covering Lemma. Let Φ be some L1-theory, Ψ ∈ Elab+(L1,LAb), and ΓAb as

defined. Say ∆ = Ψ ∪ Φ ∪ ΓAb. Let α be a L1-formula and ψ+ = (Ab(`α) ∨ α) ∧

(∀Ab x)[Ab(`
α ∧ x < `α =⇒ Ab(x))], where `α is >-than any labels mentioned in ∆.

Then g∗(Mod(α ∪ ∆)) ⊆ g∗(Mod(ψ+(α) ∪ ∆)).

Proof. Say (m1,m2) ∈ g
∗(Mod(α ∪ ∆)). This means that:

(m1,m2) |=1,Ab α ∪ ∆

(∀(n1, n2) |=1,Ab α ∪ ∆)[¬n2 <Ab m2]
(A.53)

We want to show that (m1,m2) ∈ g
∗(ψ+(α) ∪ ∆). for this, we have to show that

1. (m1,m2) |=1,Ab ψ
+(α) ∪ ∆ and that

2. (∀(o1, o2) |=1,Ab ψ
+(α) ∪ ∆)[¬o2 <Ab m2].

A.24. PROOF OF THE ψ+ COVERING LEMMA 179

To show (m1,m2) |=1,Ab ψ
+(α) ∪ ∆, it is enough to show that (m1,m2) |=1,Ab

¬Ab(`α). But this is clear – if it did not, then we could always construct m∗
2 where

Abm
∗

2 = Abm2 \ {`α}, and (m1,m
∗
2) |=1,Ab ∆ by the Upwardly Free Ab Lemma and

m∗
2 <Ab m2, refuting (A.53).

Now, to show (∀(o1, o2) |=1,Ab ψ
+(α) ∪ ∆)[¬o2 <Ab m2]. So say in fact that

(o1, o2) |=1,Ab ψ
+(α) ∪ ∆∧o2 <Ab m2. Since m2 |=Ab ¬Ab(`

α), then so does o2. Hence

(o1, o2) |=1,Ab α, and thus by (A.53), ¬o2 <Ab m2, a contradiction.

Index

Compaction1, 105

φ-reflection, 74

Full Retractability Lemma, 94

Downwardly Free Ab Lemma, 92

[f ∗]`-Equivalence Lemma, 173

Full Addition Theorem, 95

Full Retraction Theorem, 94

Monotonic Retraction Lemma, 163

ψ+ Covering Lemma, 178

Upwardly Free Ab Lemma, 92

CCALC, 19

left logical equivalence, 73

abnormalization, 14

abstraction, 69, 127

abstraction barrier, 7, 50

action attributes, 42

action descriptions, 19

additive elaboration tolerance, iv, 5, 49,

70

additive fluents, 21

Advice Taker, 3, 6

AGM postulates, 112

analytic syntax, 39, 140

answer set programming, 144

approximate objects and theories, 4

approximation, 127

axiomatic formal systems, 14, 69

bases of belief sets, 111

belief revision, iv, 111, 115

belief update, 115

Boyce-Codd normal form, 37

cautious, 66

cautious monotonicity, 73

choice function, 69, 71

closed world assumption, 35

coherence, 73, 112

contraction, 73, 111

Corollary 5.6.1, 80

Corollary 8.3.1, 93

Corollary 8.3.2, 94

Corollary 9.3.1, 99

Corollary 9.3.2, 100

counterfactuals, 28

cut, 71

d-separation, 128

Davidsonian, 41

defeasible, 20

Drosophila, 11

180

INDEX 181

dynamic logic programming, 16

elaboration tolerance, iv, 2

embedded multivalued dependencies, 38

epistemic entrenchment, 30, 112, 132

expansion, 111

extended axiomatic formal systems, 69,

70

extensional, 16, 133

faithfulness, 73

foundations, 112

frame problem, 10, 12, 132

Friedman’s translation, 107

fully addable, 58

fully retractable, 56

Gricean implicature, 26

hard truth, 27

homomorphic, 15

illocutionary force, 119

inclusion, 71, 73

incremental extensions, 15

intensional, 16, 133

interpretation update, 18

justifications, 112

Kolmogorov complexity, 31

left disjunction, 73

left interchangeability, 84, 158

Lemma 8.3.1, 93

Lemma 9.2.1, 98

lp-function, 15

monotonic, 34

monotonic consequence relation, 27

monotonicity, 73

monotony, 71

ontology, 30

operator splitting, 20, 42

partial meet contraction function, 114

prioritized circumscription, 18, 139

project, 83

Proposition 5.3.1, 74

Proposition 5.3.2, 75

Proposition 5.4.1, 76

Proposition 6.2.1, 84

propositional Horn theories, 16

protected formulas, 106

protected laws, 29

recovery postulate, 114

reflection, 73

reformulating, 35

reformulation, iv, 127

relevance, 8

revision, 111

right conjunction, 73

right interchangeability, 84, 157, 158

right monotonicity, 73

selection function, 113, 114

simple input extensions, 15

182 INDEX

soft truth, 27

stable model semantics, 16

supraclassicality, 70

synthetic syntax, 39, 140

Theorem 5.6.1, 79

Theorem 5.6.2, 79

Theorem 5.6.3, 79

Theorem 9.2.1, 98

Theorem 9.2.2, 98

Theorem 9.2.3, 99

Theorem 9.7.1, 106

trivially fully addable, 59, 78

trivially fully retractable, 56, 77

truth maintenance systems, 107

unique roles assumption, 43

update, 16

Bibliography

[Alchourrón et al., 1985] Alchourrón, C. E., Gärdenfors, P., and Makinson, D. (1985).

On the logic of theory change: Partial meet contraction and revision functions. The

Journal of Symbolic Logic, 50(2):510–530.

[Alferes et al., 2000] Alferes, J. J., Leite, J. A., Pereira, L. M., Przymusinska, H., and

Przymusinski, T. C. (2000). Dynamic updates of non-monotonic knowledge bases.

Journal of Logic Programming, 45(1-3):43–70.

[Allen, 1981] Allen, J. (1981). An interval-based representation of temporal knowl-

edge. In Hayes, P. J., editor, IJCAI, pages 221–226.

[Amir, 1998] Amir, E. (1998). Towards a Formalization of Elaboration Tolerance:

Adding and Deleting Axioms1. In Symposium on Abstraction, Reformulation and

Approximation (SARA98). Also appeared in Seventh International Workshop on

Nonmonotonic Reasoning (Belief Revision track), and extended to [Amir, 2000].

[Amir, 2000] Amir, E. (2000). Frontiers of Belief Revision, chapter Towards a For-

malization of Elaboration Tolerance: Adding and Deleting Axioms2. Kluwer. Elab-

oration of [Amir, 1998].

[Amir, 2001] Amir, E. (2001). Dividing and Conquering Logic3. PhD thesis, Stanford

University.

1http://www.cs.berkeley.edu/˜eyal/papers/et-def-sara98.ps
2http://www.cs.berkeley.edu/˜eyal/papers/et-def-syntactic.ps
3http://www.cs.berkeley.edu/˜eyal/papers/phd-thesis2001.ps

183

184 BIBLIOGRAPHY

[Baker, 1991] Baker, A. B. (1991). Nonmonotonic reasoning in the framework of

situation calculus. Artificial Intelligence, 49(1-3):5–23.

[Boutilier, 1996] Boutilier, C. (1996). Iterated revision and minimal change of condi-

tional beliefs. Journal of Philosophical Logic, 25(3):263–305.

[Brin and Page, 2003] Brin, S. and Page, L. (2003). Google.

[Chellas, 1980] Chellas, B. F. (1980). Modal Logic: An Introduction. Cambridge

University Press.

[Chernoff, 1954] Chernoff, H. (1954). Rational selection of decision functions. Econo-

metrica, 26:121–127.

[Chirkova, 2000] Chirkova, R. (2000). Linearly Bounded Reformulations of Conjunc-

tive Databases4. In Proceedings of the Sixth International Conference on Deductive

and Object-Oriented Databases (DOOD-2000).

[Cohen et al., 1998] Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A., Starr, B.,

Gunning, D., and Burke, M. (1998). The DARPA high-performance knowledge

bases project5. AI Magazine, 19(4):25–49.

[Costello, 1997] Costello, T. (1997). Non-monotonicity and Change6. PhD thesis,

Stanford University.

[Costello and McCarthy, 1999] Costello, T. and McCarthy, J. (1999). Useful Coun-

terfactuals7. Electronic Transactions on Artificial Intelligence.

[Cyc, 2003] Cyc (2003). Cycorp: Makers of the Cyc Knowledge Server for Artificial

Intelligence-Based Common Sense8. Webpage.

[da Silva, 2003] da Silva, P. P. (2003). Personal Communication.

4http://www4.ncsu.edu:8030/˜rychirko/Papers/conjRef.pdf
5http://citeseer.nj.nec.com/cohen98darpa.html
6http://www-formal.stanford.edu/tjc/phd.html
7http://www-formal.stanford.edu/jmc/counterfactuals.ht ml
8http://www.cyc.com/

BIBLIOGRAPHY 185

[Davidson, 1966] Davidson, D. (1966). The logical form of action sentences. In

Rescher, N., editor, The Logic of Decision and Action, pages 81–95. University

of Pittsburgh Press.

[de Kleer, 1986] de Kleer, J. (1986). An assumption-based tms. Artificial Intelligence,

28:127–162.

[Dickmann, 1985] Dickmann, M. A. (1985). Larger infinitary languages. In Barwise,

J. and Feferman, S., editors, Model-Theoretic Logics, pages 317–363. Springer, New

York.

[Doherty et al., 1998] Doherty, P., Gustafsson, J., Karlsson, L., and Kvarnström, J.

(1998). Temporal Action Logics (TAL): Language Specification and Tutorial9.

Electronic Transactions on Artificial Intelligence.

[Enderton, 1972] Enderton, H. B. (1972). A Mathematical Introduction to Logic.

Academic Press.

[Etherington et al., 1985] Etherington, D. W., Mercer, R. E., and Reiter, R. (1985).

On the adequacy of predicate circumscription for closed-world reasoning. Compu-

tational Intelligence, 1:11–15.

[Fikes, 2003a] Fikes, R. (2003a). Personal Communication.

[Fikes, 2003b] Fikes, R. (2003b). Personal Communication.

[Fikes, 2003c] Fikes, R. (2003c). Personal communication.

[Fikes et al., 2003] Fikes, R., Jenkins, J., and Zhou, Q. (2003). Including Domain-

Specific Reasoners with Reusable Ontologies10. In Proceedings of the 2003 Inter-

national Conference on Information and Knowledge Engineering (IKE.03).

[Fikes and Nilsson, 1971] Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new

approach to the application of theorem proving to problem solving. Artificial In-

telligence, 2:189–208.

9http://www.ep.liu.se/ea/cis/1998/015/cis98015-revised.ps
10http://ksl.stanford.edu/KSL Abstracts/KSL-03-05.html

186 BIBLIOGRAPHY

[Friedman, 1978] Friedman, H. (1978). Classically and intuitionistically provably re-

cursive functions. In Higher Set Theory, volume 699, pages 21–28. Springer Verlag.

[Friedman and Halpern, 1996] Friedman, N. and Halpern, J. Y. (1996). Belief re-

vision: A critique. In Aiello, L. C., Doyle, J., and Shapiro, S., editors, KR’96:

Principles of Knowledge Representation and Reasoning, pages 421–431. Morgan

Kaufmann, San Francisco, California.

[Gabbay, 1996] Gabbay, D. (1996). Fibred semantics and the weaving of logics: Part

I: Modal and intuitionistic logics. Journal of Symbolic Logic, 61(4):1057–1120.

[Gabbay, 1992] Gabbay, D. M. (1992). Fibred semantics and the weaving of logics.

part 2: Fibring non-monotonic logics. In Csirmaz, L., Gabbay, D. M., and de Rijke,

M., editors, Logic Colloquium ’92, pages 75–94. CSLI Publications.

[Gabbay and Nossum, 1997] Gabbay, D. M. and Nossum, R. T. (1997). Structured

contexts with fibred semantics. In Proceedings of the First International and In-

terdisciplinary Conference on Modeling and Using Context (CONTEXT-97), pages

46 – 55.

[Gärdenfors, 1992] Gärdenfors, P. (1992). Belief revision: An introduction. In

Gärdenfors, P., editor, Belief Revision, volume 29 of Cambridge Tracts in The-

oretical Computer Science, pages 1–28. Cambridge University Press, Cambridge,

UK.

[Gärdenfors and Makinson, 1988] Gärdenfors, P. and Makinson, D. (1988). Revi-

sions of knowledge systems using epistemic entrenchment. In Vardi, M., editor,

Proceedings of the Second Conference on Theoretical Aspects of Reasoning about

Knowledge, pages 83–95. Morgan Kaufmann Publishers.

[Gelfond and Lifschitz, 1993] Gelfond, M. and Lifschitz, V. (1993). Representing ac-

tion and change by logic programs. Journal of Logic Programming, 17:301–322.

BIBLIOGRAPHY 187

[Gelfond and Przymusinska, 1996] Gelfond, M. and Przymusinska, H. (1996). To-

wards a theory of elaboration tolerance: logic programming approach11.

[Genesereth, 2003] Genesereth, M. (2003). Personal Communication.

[Ginsberg and Smith, 1987] Ginsberg, M. L. and Smith, D. E. (1987). Reasoning

about action I: a possible worlds approach. In Brown, F. M., editor, The Frame

Problem in Artificial Intelligence: Proceedings of the 1987 Workshop, pages 233–

258. Morgan Kaufmann.

[Giunchiglia and Lifschitz, 1998] Giunchiglia, E. and Lifschitz, V. (1998). An action

language based on causal explanation: Preliminary report. In AAAI/IAAI, pages

623–630.

[Giunchiglia and Walsh, 1992] Giunchiglia, F. and Walsh, T. (1992). A theory of

abstraction. Artificial Intelligence, 57(2-3):323–389.

[Green, 1969] Green, C. (1969). Applications of theorem proving to problem solving.

In Proceedings IJCAI 69, pages 219–240.

[Grice, 1989] Grice, P. (1989). Studies in the Way of Words. Harvard University

Press.

[Guha, 1991] Guha, R. V. (1991). Contexts: A Formalization and Some Applica-

tions12. PhD thesis, Stanford University. Also published as technical report STAN-

CS-91-1399-Thesis, MCC Technical Report Number ACT-CYC-423-91.

[Guha, 2003] Guha, R. V. (2003). Personal Communication.

[Gustafsson and Kvarnström, 2001] Gustafsson, J. and Kvarnström, J. (2001). Elab-

oration tolerance through object-orientation. In Working Notes of Common Sense

2001, pages 134–144. Fifth International Symposium on Logical Formalization of

Commonsense Reasoning.

11http://www.cs.ttu.edu/˜mgelfond/papers/tolerance.ps
12http://www-formal.stanford.edu/guha/guha-thesis.ps

188 BIBLIOGRAPHY

[Haas, 1987] Haas, A. R. (1987). The case for domain-specific frame axioms. Pro-

ceedings of the 1987 Workshop on the Frame Problem, pages 343–348.

[Haugh, 1987] Haugh, B. A. (1987). Simple causal minimizations for temporal persis-

tence and projection. In Proceedings of the Sixth National Conference on Artificial

Intelligence, pages 218–223.

[Kakas et al., 1999] Kakas, A., Miller, R., and Toni, F. (1999). An Argumentation

Framework for Reasoning about Actions and Change13. In Gelfond, M., Leone, N.,

and Pfeifer, G., editors, Proceedings of the 5th International Conference on Logic

Programming and Nonmonotonic Reasoning, LNAI 1730, pages 78–91. Springer

Verlag.

[Katsuno and Mendelzon, 1992] Katsuno, H. and Mendelzon, A. O. (1992). On the

difference between updating a knowledge base and revising it. In Gärdenfors, P.,

editor, Belief Revision, pages 183–203. Cambridge University Press.

[Kautz and Selman, 1996] Kautz, H. and Selman, B. (1996). Pushing the envelope:

Planning, propositional logic, and stochastic search. In Shrobe, H. and Senator, T.,

editors, Proceedings of the Thirteenth National Conference on Artificial Intelligence

and the Eighth Innovative Applications of Artificial Intelligence Conference, pages

1194–1201, Menlo Park, California. AAAI Press.

[Kautz et al., 1996] Kautz, H. A., McAllester, D., and Selman, B. (1996). Encoding

plans in propositional logic. In Proceedings of the Fifth International Conference on

the Principle of Knowledge Representation and Reasoning (KR’96), pages 374–384.

[Keller and Wilkins, 1985] Keller, A. M. and Wilkins, M. W. (1985). On the use of

an extended relational model to handle changing incomplete information. IEEE

Transactions on Software Engineering, SE-11(7):620–633.

[Kent, 1978] Kent, W. (1978). Data and Reality: Basic Assumptions in Data Pro-

cessing Reconsidered. North-Holland Publishing Company.

13http://www.ucl.ac.uk/˜uczcrsm/LanguageE/lpnmr99.ps

BIBLIOGRAPHY 189

[Kolmogorov, 1965] Kolmogorov, A. N. (1965). Three approaches to the quantitative

definition of information. Problems of Information and Transmission, 1(1):1–7.

[Kraus et al., 1990] Kraus, S., Lehmann, D., and Magidor, M. (1990). Nonmonotonic

reasoning, preferential models and cumulative logics. Artificial Intelligence, 44:167–

207.

[Lee and Lifschitz, 2001] Lee, J. and Lifschitz, V. (2001). Additive fluents. In Pro-

ceedings of AAAI 2001 Spring Symposium on Answer Set Programming, pages

116–123. AAAI Press.

[Lehmann, 2001] Lehmann, D. (2001). Nonmonotonic logics and semantics. Journal

of Logic and Computation, 11(2):229–256.

[Lenat and Guha, 1990] Lenat, D. B. and Guha, R. V. (1990). Building Large

Knowledge-Based Systems: Representation and Inference in the CYC Project.

Addison-Wesley.

[Lewis, 1973] Lewis, D. (1973). Counterfactuals. Harvard University Press.

[Lifschitz, 1987] Lifschitz, V. (1987). Formal theories of action. In Brown, F., editor,

The Frame Problem in Artificial Intelligence: Proceedings of the 1987 Workshop,

pages 35–58, Los Altos, CA. Morgan Kaufmann Publishers.

[Lifschitz, 1996] Lifschitz, V. (1996). Two components of an action language. In

Buvač, S. and Costello, T., editors, Working Papers: Common Sense ’96, pages

89–95, Stanford University. Computer Science Department, Stanford University.

[Lifschitz, 2000] Lifschitz, V. (2000). Missionaries and cannibals in the causal calcula-

tor. In Cohn, A. G., Giunchiglia, F., and Selman, B., editors, KR2000: Principles

of Knowledge Representation and Reasoning,Proceedings of the Seventh Interna-

tional conference, pages 85–96. Morgan-Kaufman.

[Maier and Warren, 1982] Maier, D. and Warren, D. S. (1982). Specifying connec-

tions for a universal relation scheme database14. In Proceedings of the 1982 ACM

14http://portal.acm.org/citation.cfm?id=582355&coll=portal&dl=ACM&ret=1

190 BIBLIOGRAPHY

SIGMOD International Conference on Management of Data, pages 1–7. ACM

Press.

[McCain and Turner, 1997] McCain, N. and Turner, H. (1997). Causal theories of

action and change. In Shrobe, H. and Senator, T., editors, Proceedings of the

Thirteenth National Conference on Artificial Intelligence and the Eighth Innova-

tive Applications of Artificial Intelligence Conference, pages 460–465, Menlo Park,

California. AAAI Press.

[McCarthy, 1959] McCarthy, J. (1959). Programs with Common Sense15. In Mechani-

sation of Thought Processes, Proceedings of the Symposium of the National Physics

Laboratory, pages 77–84, London, U.K. Her Majesty’s Stationery Office. Reprinted

in [McCarthy, 1990].

[McCarthy, 1962] McCarthy, J. (1962). Towards a Mathematical Science of Compu-

tation16. In Information Processing ’62, pages 21–28. North-Holland. Proceedings

of 1962 IFIP Congress.

[McCarthy, 1986] McCarthy, J. (1986). Applications of Circumscription to Formal-

izing Common Sense Knowledge17. Artificial Intelligence, 28:89–116. Reprinted in

[McCarthy, 1990].

[McCarthy, 1988] McCarthy, J. (1988). Mathematical logic in artificial intelligence.

Daedalus, 117(1):297–311.

[McCarthy, 1990] McCarthy, J. (1990). Formalizing Common Sense: Papers by John

McCarthy. Ablex Publishing Corporation, 355 Chestnut Street, Norwood, NJ

07648.

[McCarthy, 1993] McCarthy, J. (1993). Notes on formalizing context. In IJCAI 93.

[McCarthy, 1997] McCarthy, J. (1997). Elaboration Tolerance18. In McCarthy’s web

page. Dynamic version of [McCarthy, 1998].

15http://www-formal.stanford.edu/jmc/mcc59.html
16http://www-formal.stanford.edu/jmc/towards.html
17http://www-formal.stanford.edu/jmc/applications.html
18http://www-formal.stanford.edu/jmc/elaboration.html

BIBLIOGRAPHY 191

[McCarthy, 1998] McCarthy, J. (1998). Elaboration Tolerance19. In Proceedings of

the Fourth Symposium on Logical Formalizations of Common Sense Reasoning.

[McCarthy, 2000] McCarthy, J. (2000). Approximate objects and approximate theo-

ries. In Cohn, A. G., Giunchiglia, F., and Selman, B., editors, KR2000: Principles

of Knowledge Representation and Reasoning, Proceedings of the Seventh Interna-

tional conference, pages 519–26. Morgan-Kaufman.

[McCarthy, 2002a] McCarthy, J. (2002a). Personal communication.

[McCarthy, 2002b] McCarthy, J. (2002b). Personal communication.

[McCarthy, 2003] McCarthy, J. (2003). Personal communication.

[McCarthy and Buvač, 1994] McCarthy, J. and Buvač, S. (1994). Formalizing Con-

text (Expanded Notes). Technical Note STAN-CS-TN-94-13, Stanford University.

[McCarthy and Painter, 1967] McCarthy, J. and Painter, J. (1967). Correctness of

a compiler for arithmetic expressions. In Schwartz, J. T., editor, Proceedings of

Symposium in Applied Mathematics, vol 19, Mathematical Aspects of Computer

Science, pages 33–41, Providence, RI. American Mathematical Society.

[McDermott, 1978] McDermott, D. (1978). Tarskian semantics, or no notation with-

out denotation! Cognitive Science, 2(3):277–282.

[McDermott, 1987] McDermott, D. (1987). A critique of pure reason. Journal of

Computational Intelligence, 3(3):151–160.

[McGuinness et al., 2000] McGuinness, D. L., Fikes, R., Rice, J., and Wilder, S.

(2000). An Environment for Merging and Testing Large Ontologies20. In Proceed-

ings of the Seventh International Conference on Principles of Knowledge Repre-

sentation and Reasoning (KR2000); Breckenridge, Colorado.

[McIlraith, 2000] McIlraith, S. (2000). An axiomatic solution to the ramification

problem. Artificial Intelligence, 116:87–121.

19http://www-formal.stanford.edu/jmc/elaboration.html
20http://www.ksl.stanford.edu/KSL Abstracts/KSL-00-16.html

192 BIBLIOGRAPHY

[McIlraith, 2003] McIlraith, S. (2003). Personal Communication.

[Morgenstern, 1998] Morgenstern, L. (1998). Common Sense Problem Page21. Web-

page.

[Moulin, 1985] Moulin, H. (1985). Choice functions over a finite set: A summary.

Social Choice and Welfare, 2:147–160.

[Parmar, 2002] Parmar, A. (2002). Formalizing elaboration tolerance. Thesis Pro-

posal.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Net-

works of Plausible Inference. Morgan Kaufmann.

[Pearl and Verma, 1987] Pearl, J. and Verma, T. (1987). The logic of representing

dependencies by directed graphs. In Proceedings of the 6th National Conference on

AI (AAAI-87), volume 2, pages 374–379.

[Perez and Jiroušek, 1985] Perez, A. and Jiroušek, R. (1985). Constructing an in-

tensional expert system (ines). In van Bemmel, J., Grémy, F., and Zvárová, J.,

editors, Medical Decision Making: Diagnostic Strategies and Expert Systems, pages

307–315. North-Holland, Amsterdam.

[Reiter, 1980] Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence,

13 (1–2):81–132.

[Reiter, 1991] Reiter, R. (1991). The frame problem in the situation calculus: A

simple solution (sometimes) and a completeness result for goal regression22. In Lif-

schitz, V., editor, Artificial Intelligence and Mathematical Theory of Computation,

pages 359–380. Academic Press.

[Schubert, 1990] Schubert, L. (1990). Monotonic solution of the frame problem in the

situation calculus: An efficient method for worlds with fully specified actions. In

Kyburg, H. E., Loui, R. P., and Carlson, G. N., editors, Knowledge Representation

21http://www-formal.stanford.edu/leora/cs/
22http://www.cs.toronto.edu/cogrobo/simple.ps.Z

BIBLIOGRAPHY 193

and Defeasible Reasoning, volume 5, pages 23–67. Kluwer Academic Publishers,

Dordrecht / Boston / London.

[Sejnowski and Rosenberg, 1986] Sejnowski, T. J. and Rosenberg, C. R. (1986).

Nettalk: a parallel network that learns to read aloud. Technical report, Johns

Hopkins University. Electrical Engineering and Computer Science Dept.

[Sejnowski and Rosenberg, 1988] Sejnowski, T. J. and Rosenberg, C. R. (1988).

Nettalk: a parallel network that learns to read aloud. In Anderson, J. A. and

Rosenfeld, E., editors, Neurocomputing, volume Volume 1: Foundations of Re-

search, pages 663–672. MIT Press, Cambridge, MA. Paper originally published

as [Sejnowski and Rosenberg, 1986].

[Semantic Web, 2002] Semantic Web (2002). Semantic web.

[Sen, 1970] Sen, A. K. (1970). Collective Choice and Social Welfare. Holden-Day,

San Francisco.

[Shanahan, 1997] Shanahan, M. (1997). Solving the Frame Problem: A Mathematical

Investigation of the Common Sense Law of Inertia. M.I.T. Press.

[Simons, 2000] Simons, P. (2000). Smodels Web Page23. Web page.

[Subramanian and Genesereth, 1987] Subramanian, D. and Genesereth, M. R.

(1987). The relevance of irrelevance. In Proceedings of IJCAI-87, volume 1, pages

416 – 422.

[Syrjänen, 2000] Syrjänen, T. (2000). Lparse User’s Manual (Draft 1.0)24. Digital

Systems Laboratory, Helsinki University of Technology.

[van Benthem, 1988] van Benthem, J. (1988). A Manual of Intensional Logic. CSLI

Publications.

[van Benthem, 2003] van Benthem, J. (2003). Personal communication.

23http://www.tcs.hut.fi/Software/smodels/
24http://www.tcs.hut.fi/Software/smodels/lparse/lparse.ps.gz

194 BIBLIOGRAPHY

[van Eijck and Kamp, 1997] van Eijck, J. and Kamp, H. (1997). Representing dis-

course in context. In van Benthem, J. and ter Meulen, A., editors, Handbook of

Logic and Language, pages 180–237. North-Holland.

[Winslett, 1989] Winslett, M. (1989). Sometimes updates are circumscription. In

Proceedings of the 11th International Joint Conference on Artificial Intelligence

(IJCAI’89), pages 859–863.

