

Some Mathematical Structures Underlying Efficient Planning

Aarati Parmar
Department of Computer Science,

Gates Building, 2A wing
Stanford University, Stanford, CA 94305-9020, USA

aarati@cs.stanford.edu

Abstract

We explore antimatroids, also known as shelling structures,
a construct used to formalize when greedy (local) algorithms
are optimal, as well as their relation to the strong measure of
progress P introduced in (Parmar 2002b). We begin with an
example from the map coloring domain to spark the reader’s
intuitions, and then move towards a more general applica-
tion of shelling to the strong measure of progress. We also
introduce some extensions of shelling to planning on a dif-
ferent level. Macro-operators are another kind of mathemat-
ical structure that help give efficient and easy-to-understand
plans, but we must be careful how we use them when defining
strong measures of progress.

1 Introduction
Current planning technologies often rely on numerical es-
timates to ascertain which actions make progress towards
the goal. (Parmar 2002b) is the first attempt to describe
this progress logically in terms of local predicates of the
domain. Part of the rationale behind such a “logical mea-
sure of progress” is that it identifies subgoals which can be
completed immediately, without clobbering other subgoals.
Since it is declaratively represented, the logical measure of
progress is easily understandable from its formulation, and
can be easily modified, compared to numerical estimates. As
an example, consider the goal of attending the AAAI Spring
Symposium. One has to drive to Stanford, and then go to
the lecture hall. A planner using a numeric-based estimate
would point the way to the goal by deeming the value of
driving to Stanford as higher than say, driving to Berkeley.
A logical measure of progress would instead explicitly de-
scribe driving to Stanford as a necessary landmark needed
to get to the lecture hall.

This paper examines some of the issues related to con-
structing a logical measure of progress. The main thread
is concerned with how to decompose a planning problem
into smaller, easier problems, based on the structure of a do-
main. (Long & Fox 2000; Fox & Long 2001) have already
formalized some structure in terms of generic types, which
represent common sense concepts such as mobiles (objects
which can move to different locations) and maps (routes
upon which mobiles can move). These common sense con-
cepts provide some limited but powerful semantics which is
used to constrain search whilst planning.

At the other end of the spectrum, (Bylander 1994) gives
very general complexity results for propositional STRIPS-
style planning problems in terms of the structure of the oper-
ators. Recall that a STRIPS style o operator consists of three
lists: a precondition list op, an add list oa, and a delete list
od. The postconditions are the union of oa and od; oa are the
positive postconditions, and od the negative ones. Bylander
assumes that each list consists only of ground literals, and
that the goal is a set of ground literals, while the initial state
is a set of atomic formulas. He then shows that finding a plan
(or proving none exist) in this kind of domain is polynomial
in the size and number of operators when:

1. Each operator has any number of positive preconditions
and at most one postcondition, or

2. Each operator has exactly one precondition and there are
a bounded number of goal literals, or

3. Each operator has zero preconditions.

Case 1 is polynomial because one can first apply all of the
operators with positive postconditions in order to get a max-
imal superset of the goals true, and then apply the operators
with negative postconditions to remove all negative goals.
Cases 2 and 3 both are proven using backward search from
the goal. 2. works because each goal can be broken down
into at most one subgoal, which keeps backward search from
the goal polynomial as long as the number of goals is fixed.
In case 3, we start with the goal, only considering opera-
tors that do not clobber the goals, and then recurse on the
reduced problem where the goals are those minus the ones
achieved by the operator. When the remaining goals are true
in the initial state, we have a plan.

The results in (Bylander 1994) are impressive, despite the
restrictions, because they detail polynomial-time algorithms
for planning based only on rather coarse structure. One way
we differ in our approach is that we take a finer-grained
view of this mathematical structure, looking closer at de-
pendencies between goals and operators. Also, we study a
more specific kind of [lack of] complexity than computa-
tional complexity, that is, when we can identify some notion
of progress for a planning domain. However, the existence
of this measure of progress will imply some kind of polyno-
mial complexity. It is interesting to note that the rationale
behind cases 1 and 3 do use some notions of progress; 1.

first tries to accomplish all positive goals, and then all neg-
ative ones, while 3. works by avoiding clobbering, which is
the dual notion to making progress.

We explore three topics:

1. What is the underlying mathematical structure that allows
us to have a logical measure of progress for some planning
domains?
We begin with a map coloring example in Section 3 as a
clear demonstration of planning without search. The ex-
ample provides not only the mathematical structure, but
the intuition surrounding this concept. In Section 4, we
define the strong measure of progress introduced in (Par-
mar 2002b), and examine how our mathematical struc-
tures relate to it.

2. Shelling, a key concept underlying greedy progress, may
be more generally applicable to planning problems. We
provide some indications of this in Section 5.

3. In Section 6, we discuss the utility of adding macro-
operators to our theory and how it affects our strong mea-
sure of progress.

2 Mathematical Preliminaries
First we provide some basic definitions from graph and set
theory, and then introduce antimatroids. Throughout this pa-
per we assume that all sets are finite and non-empty.

Let V be a set. (V,E) is a graph with vertices V and
edges E ⊆ V 2. If U ⊆ V , the notation (V,E) \ U refers to
the graph with nodes in U , and all edges referring to them,
removed from (V,E). We treat cartographic maps as graphs.

Let A be a set. (A,L) is a language over the alphabet A
if L contains some subset of the sequences of letters from
A: L ⊆ A∗. We use the Greek letters α and β to refer to
strings in L. The symbol ∅ refers to the empty sequence.
We use letters x, y, z to refer to symbols of A. x ∈ α means
the symbol x occurs in the string α. α̂ is α’s underlying set:
α̂ = {x ∈ A | x ∈ α}. We distinguish between the string
(x1 . . . xk) and the set {x1, . . . , xk}. Also, a <α b means
the symbol a occurs before b in string α, assuming no repe-
titions of either element.

The language (A,L) is normal if every symbol in A ap-
pears in some word of L. (A,L) is simple if no string in L
has a repeated element. A hereditary language (A,L) is one
that is closed under all prefixes: ∅ ∈ L, and αβ ∈ L =⇒
α ∈ L.

Greedoids (Korte, Lovász, & Schrader 1991) are the
mathematical structures which enable greedy algorithms to
reach optimal solutions. They can be divided into two mu-
tually exclusive classes, the matroids and the antimatroids.
We can visualize antimatroids, or shelling structures (Korte
& Lovász 1981), as structures which can be readily decom-
posed by removing successive layers until nothing is left.

(Korte, Lovász, & Schrader 1991) show how convex
geometries in Euclidean spaces illustrate this notion of
shelling. A set X is convex if every line connecting two
points in X is contained in X . An extreme point x of a set
X is one that is not included in the convex hull (the convex
closure) of X \ x. The shelling of a set X is the process by

which the extreme points of X are progressively removed.
One possible shelling is depicted in Figure 1.

a
b

c

d
e

Figure 1: One possible shelling of a set of points. a is not in
the convex closure of {b, c, d, e}, is extreme, and can there-
fore be removed. Then b can be shelled from {c, d, e}, and
so forth. The resulting shelling sequence for this example
is abcde. (Keep in mind that there are many other possible
shellings for this set.)

Formally, a shelling is represented by a set of strings of
X with no repetitions, each sequence recording the order
in which extreme points are removed. The set of shelling
sequences in a convex geometry is always an antimatroid.
Definition 1 below gives a formal definition of these shelling
sequences. Note that an antimatroid can also be formulated
as a set, explained later below.

Definition 1 (Antimatroids (Korte & Lovász 1981))
Let (A,L) be a language. It is an antimatroid iff:

1. (A,L) is simple.
2. (A,L) is normal.
3. (A,L) is hereditary.

4. α, β ∈ L ∧ α̂ 6⊆ β̂ =⇒ (∃x ∈ α)[βx ∈ L]

Each sequence α ∈ L describes the order in which ele-
ments are shelled from A. Since (A,L) is simple, no ele-
ment is removed twice. Normality means that every element
of A is mentioned in some elimination sequence. The hered-
itariness closes L under prefixes, so that it includes all le-
gal partial eliminations. The fourth property, combined with
normality and simplicity, guarantee that any partial elimi-
nation sequence can be extended to one which removes all
elements of A. Lemma 2 proves this:

Lemma 2
Let (A,L) be an antimatroid. Then there exists a string α ∈
L containing all elements of A.

Proof: Assume not. Take any maximal string β ∈ L,
whose underlying set is not strictly included in some other
string. Consider the symbols A \ β̂ that are missing from β.
Since L is normal, there is another string γ which mentions
some of these missing elements. By property 3 in Defini-
tion 1, one of the elements in γ can be appended to β to
produce another member of L. Since L is simple, it must be
an element not already in β (no repeated elements allowed).
But then β is not maximal. �

Antimatroids can also be generated by means of a family
Hx of sets, known as alternative precedence structures. For
each x ∈ A, Hx ⊆ 2A\x is any set of subsets of A\x. From
these sets we can generate a language:

LH={(x1 . . . xk) |(∀i ≤ k)[xi ∈ A ∧
(∃U ∈ Hxi

)[U ⊆ {x1, . . . , xi−1}]]}
(1)

The sets U ∈ Hxi
can be thought of as the possible “en-

ablers” for xi; xi cannot be shelled away until all of the
elements in one of the precedence sets in Hxi

have. For the
convex shelling example, each set in Hxi

corresponds to the
elements that need to be removed in order for xi to be an ex-
treme point of the resulting set. From this one can see how
the Hxi

s determine the ordering of elements in LH .
Theorem 1 ties together the above three concepts:

Theorem 1 (Antimatroids (Korte, Lovász, & Schrader 1991))
Let (A,L) be a simple, normal language. Then the follow-
ing three statements are equivalent:

1. (A,L) is an antimatroid.
2. (A,L) is the language of shelling sequences of a convex

geometry.
3. (A,L) is the language of feasible words of a system of

alternative precedences.

Earlier we mentioned antimatroids can be formulated ei-
ther in terms of languages, or sets. Any language antima-
troid (A,L) can be converted to a set version (A,F) by
defining F = {α̂ | α ∈ L}. Additionally, an antimatroid
(A,F) can be converted to a unique language antimatroid,
so the two representations are interchangeable.

Besides convex shellings and alternative precedence
structures, one of the most natural ways to generate an an-
timatroid is through the shelling of a poset (P,≤) (Korte
& Lovász 1981), where the ≤-minimal elements are repeat-
edly eliminated from P . The language L≤ describing these
eliminations can be formulated as:

L≤ = {(x1 . . . xk) | {x1, . . . , xk} is downwards
closed under ≤ and the ordering is
compatible with ≤.}

(2)
Figure 2 gives an example poset shelling for the given

poset.

Language antimatroid
d

cb

a
acdb
acbd
abcd

ac
ab
a

acd
acb
abc

Figure 2: Poset ≤ and resulting language antimatroid.

Another way to generate the shelling of a poset is by using
alternative precedence structures: fix each Hx to contain the
single alternative precedence set, {y ∈ P \ x | y ≤ x}.

3 Map Coloring Problem
Map coloring is one domain where planning can be reduced
to reasoning about the order in which goals are achieved.
The Four Color Theorem (Appel & Haken 1977a; 1977b)
guarantees that any map can be colored with at most four
colors, and there is already a quadratic algorithm (Robertson
et al. 1995) for doing so. Our rationale for researching this
domain is knowing when and how we can solve the problem
without having to backtrack. This is the same motivation as
that for finding a logical measure of progress for planning.

(McCarthy 1982) reiterates a reduction alluded to
by (Kempe 1879) that will never require backtracking: if
a country C in a map has three or fewer neighbors, then we
can postpone four-coloring C until the other three neighbors
have been colored. The original problem of coloring reduces
to the same map minus C. In some cases, such as the map
of the United States, this process will continue until the map
is completely stripped, in which case coloring is done in the
reverse order that the countries are eliminated, respecting
other countries’ colors as required.1

We provide a theorem which elucidates the fundamen-
tal structure required for maps to be so easily reduced, and
shows how they are in fact, antimatroids. The shells re-
moved are the vertices of degree three or less. We generalize
to n colors:

Definition 3 (n-reducible maps)
A map (V,E) is n-reducible if one can repeatedly remove
vertices of degree n or less from the graph, until the empty
graph is encountered.

If a map (V,E) is n-reducible then we can color it with
n+1 colors without ever having to backtrack. We can prove
that a map is n-reducible iff its underlying structure is an
antimatroid. To do so we first define for each x ∈ V a set
Hx ⊆ 2V \x satisfying the following:

Hx = {U ⊆ V \ x | x has degree n or less
in the graph (V,E) \ U}

(3)

The sets in each Hx are just ways we can pare down vertex
x in graph (V,E) to having n or fewer neighbors by remov-
ing other vertices. This does not involve any reasoning about
the order in which nodes are removed, and only involves
thinking about removing the nodes which are neighbors of
x, as the sets in Hx are closed under supersets.

We define our shelling sequences, LH as in (1) using the
definition of Hx in (3).

Theorem 2 (n-reducible maps are antimatroids.)
Let (V,E) represent a map. (V,E) is n-reducible iff
(V,LH) is an antimatroid.

Proof: →: If (V,E) is n-reducible, then there is a
sequence of shelling vertices so that the empty graph is
reached; that is, there is a sequence α which uses all ele-
ments in V . If we can show α ∈ LH , then we are done,

1We do not address the more complicated reduction for coun-
tries with four neighbors based on Kempe transformations.

because then LH is normal and by Theorem 1 it is an anti-
matroid.

Call α = (x1 . . . xm). To show α ∈ LH , we must show
for each xi ∈ α, (∃U ∈ Hxi

)[U ⊆ {x1, . . . , xi−1}]. But
since α is a proper shelling of (V,E), each xi is of degree
n or less in the graph (V,E) \ {x1, . . . , xi−1}. So clearly
{x1, . . . , xi−1} is a member of Hxi

and we have our U .
←: If (V,LH) is an antimatroid then it contains a se-

quence α = (x1 . . . xm) mentioning all elements of V by
Lemma 2. α encodes one possible way to reduce (V,E),
since for any graph (V,E) \ {x1, . . . , xi−1}, 1 ≤ i ≤ m,
there is always a vertex with degree n or less that can be
removed:

For i = 1 clearly x1 is one of the vertices of degree
n or less: (∃U ∈ Hx1

)[U ⊆ ∅] implies ∅ ∈ Hx1
so

x1 already has degree n or less in the graph (V,E). For
i > 1, we know that once vertices x1, . . . xi−1 have been
removed, xi has degree n or less, since each xi ∈ α obeys
(∃U ∈ Hxi

)[U ⊆ {x1, . . . , xi−1}], that is, some subset
of the vertices {x1, . . . , xi−1} when removed causes xi to
have degree n or less.

�

4 Antimatroids and the Strong Measure of
Progress

We would like a more constructive characterization of what
it means to have a strong measure of progress for planning,
which is a metric that tells us which actions to perform to
lead us closer to the goal state. (Parmar 2002b) has already
shown that the domains with a strong measure of progress
are precisely those lacking deadlocks (states from which it
is impossible to reach the goal state), since one can only
always make strict progress if there are no pitfalls in which
to fall.

We first recall our standard formulation of a strong mea-
sure of progress. It represented by a predicate defined over a
planning domain. The planning domain is described in terms
of a standard situation calculus theory T , with finitely many
objects Objects in the domain, with the initial situation S0

and transition function res(a, s). We assume there is only
one fluent symbol Φ(x, s), which poses no restrictions since
fluents can be “coded” by extra object tuples. For each ac-
tion symbol a we assume T contains a successor state axiom
of the form

Φ(x, res(a(y), s)) ⇐⇒ γ+

Φ
(x, a(y), s) ∨

Φ(x, s) ∧ ¬γ−
Φ

(x, a(y), s).
(4)

γ+

Φ
and γ−

Φ
are abbreviations for fluent formulas.

γ+

Φ
(x, a(y), s) details the circumstances which are required

to make Φ(x, res(a(y), s)) true, while γ−
Φ

(x, a(y), s) are
those which make it false. T may additionally contain other
axioms such as static constraints. goal(s) abbreviates the
fluent formulas which are true in the goal state. Planning in-
volves finding a sequence of actions from S0 such that goal
holds at the end.

Definition 4 (Strong Measure of Progress (Parmar 2002b))
Let P (x1, . . . , xn, s) represent a fluent formula with
x1, . . . , xn object variables and s a situation variable. P
is an n-ary, strong measure of progress if:

T |=(∀s)[¬goal(s)=⇒(∃a)[ext(P, s)⊂ext(P, res(a, s))]],
(5)

where ext(P, s) = {x | T |= P (x, s)} and ⊂ is strict set
inclusion.

(5) says that as long as we are not yet in the goal state,
we can always find an action which strictly increases the
extension of P . To plan, from S0 we follow the gradient
of P upwards, with respect to set inclusion, to eventually
reach a goal, in at most |Objectsn \ ext(P, S0)| steps. After
this many actions, P will be true of all object tuples in the
domain, and then the contrapositive of (5) means that goal
will hold.

Intuitively, there seems to be a strong connection between
the strong measure of progress P and shelling structures.
P essentially cuts up the space in such a way that after
enough (or all) objects are “shelled away” into P , we have
reached the goal. An even more obvious intuition comes
from the fact that antimatroids are a subclass of greedoids,
structures synonymous with (greedy) steepest ascent algo-
rithms, which is exactly what P enables.

Here are some initial forays into this idea:

Definition 5 (≤P ordering)
Let x and y be n-tuples. Then we define:

x ≤P y ≡def T |= (∀s)[P (y, s) =⇒ P (x, s)] (6)

≤P formalizes a dependency between x and y; P (y, s)
cannot be true unless P (x, s) is.

The intuition behind ≤P is that it encodes some kind of
[goal] ordering on elements of Objects, informing us that x
should be put into P before y. If we can show that ≤P is
a poset, then we can extract an antimatroid that details the
ways to put elements into P . Clearly, ≤P is reflexive and
transitive, but anti-symmetry requires that:

[T |= (∀s)[P (x, s) ⇐⇒ P (y, s)]] =⇒ x = y, (7)

that is, if x and y look the same in all situations and mod-
els under P , then they must be the same tuple. The only two
predicates we care about whilst planning is our strong mea-
sure of progress P and goal. Hence we can assume that (7)
holds – finding a plan in a domain where (7) is false is equiv-
alent to finding a plan in a reduced domain lacking mention
of y, since P cannot distinguish between them. This justifi-
cation should be further studied, however.

The straightforward way to generate our shelling structure
is through alternative precedence structures:

Hx = {{y ∈ Objects \ x | y ≤P x}}
L≤P

= {(x1 . . . xk) |(∀i ≤ k)[xi ∈ Objects ∧
(∃U ∈ Hxi

)[U ⊆ {x1, . . . xi−1}]]}
= {(x1 . . . xk) |(∀i ≤ k)(∀y ∈ Objects \ xi)

[y ≤P xi =⇒ y ∈ {x1, . . . xi−1}]}
(8)

We would like to show that L≤P
mirrors the workings of

P – if we keep performing actions which strictly increase P ,
then the xis will be absorbed into P in the order given by a
string of L≤P

. We would also like to show that every string
of L≤P

corresponds to the objects absorbed into P along
some action sequence strictly increasing P (and leading to
the goal).

First we make some assumptions about our domain T and
its associated measure of progress P : we assume Objects =
{x1, . . . , xn} and the goal formula mentions each of the ob-
jects: goal(s) ≡ P (x1, s)∧. . .∧P (xn, s). Also assume that
ext(P, S0) is empty, that is, ¬(∃x ∈ Objects)[P (x, S0)].
Finally, we assume that S0 is complete with respect to all
fluents; that is for every fluent we know either F (S0) or
¬F (S0) holds. Because of the form of our successor state
axioms, this guarantees that all facts about every reachable
situation is known and that our theory is complete.

Definition 6 (LP+traj .)
Define the structure LP+traj to be the set of strings which
record the order in which elements of Objects are added to
P along any sequence of actions, starting from S0, which
strictly increase P .

For simplicity, we assume that for each P -increasing ac-
tion a, exactly one element of Objects is added to P , cour-
tesy of the following lemma:

Lemma 7 (Simplifying strong measures of progress)
Let T be a domain theory with a strong measure of progress
P and objects Objects. We can always define another mea-
sure of progress Q, on an alternate domain Objects′, such
that for each P -increasing action a at s we add exactly one
element to the extension of Q.

Proof: The idea is to think of the sets of elements that
are added to P ’s extension as elements in their own right.
We visualize the set of elements in ext(P, res(a, s)), where
ext(P, res(a, s)) ⊃ ext(P, s), as two elements: ext(P, s),
and ext(P, res(a, s))−ext(P, s). Let Objects′ = 2Objects.
Let y1 = ext(P, s) and y2 = ext(P, res(a, s)) −
ext(P, s). The following axioms guarantee that Q(y1, s) ∧
Q(y1, res(a, s)) ∧ Q(y2, res(a, s)) and for no other y ∈
Objects′.

Q(y, S0) ≡ y = ext(P, S0)
Q(y, res(a, s)) ≡ Q(y, s) ∨

y = ext(P, res(a, s))− ext(P, s)
(9)

�

Continuing, we ask two questions: when does L≤P
⊆

LP+traj and LP+traj ⊆ L≤P
? Ultimately we would like to

know when L≤P
= LP+traj , that is, when the shelling of

the partial order≤P encapsulates all the P -increasing plans,
or more succinctly, when P generates an antimatroid struc-
ture under ≤P . It turns out the first question holds for our
assumptions, but not the second:

Theorem 3 (LP+traj ⊆ L≤P
)

The order that elements are added into P starting from S0

respects the partial order ≤P .
Proof: Let α = (x1 . . . xk) ∈ LP+traj be the sequence

of objects which are added to P along some P -increasing
path from S0. Assume otherwise that α 6∈ L≤P

, that there
are elements xi <α xj but xj ≤P xi. Since xi occurs before
xj , there is a situation s1 where P (xi, s1)∧¬P (xj , s1). But
xj ≤P xi ≡ (∀s)[P (xi, s) =⇒ P (xj , s)], a contradiction.
�

The other direction, that L≤P
⊆ LP+traj , requires

more assumptions. We must show that any shelling of the
poset (Objects,≤P) is realized by some plan which fol-
lows the directives of P . In other words, if (x1 . . . xk) ∈
L≤P

then we must show that P (x1, res(a, S0)) is
possible for some a, then P (x1, res(a

′, res(a, S0))) ∧
P (x2, res(a

′, res(a, S0))) for another a′, etc. While it is
true that eventually all x1, . . . , xn will be added to P , we
do not know enough about P to guarantee that we can emu-
late the order given by α. Some possible pitfalls include not
having the preconditions be met, or not being able to find an
action a to add xi to P without removing one of x1, . . . xi−1.

It helps to study domains which do have this antimatroid
property. The Kitchen Cleaning domain described below has
LP+traj = L≤P

. From (Parmar 2002b):

[C]leaning any object makes it clean. However, clean-
ing the stove or fridge dirties the floor, and cleaning the
fridge generates garbage and messes up the counters.
Cleaning either the counters or floor dirties the sink.
The goal is for all the appliances to be clean and the
garbage emptied.

There is an obvious strong measure of progress P here:

P (fridge, s)⇐⇒Clean(fridge, s)
P (stove, s)⇐⇒Clean(stove, s)

P (counters, s)⇐⇒Clean(counters, s) ∧ P (fridge, s)
P (floor, s)⇐⇒Clean(floor, s) ∧ P (fridge, s)∧

P (stove, s)
P (garbage, s)⇐⇒Empty(garbage, s) ∧ P (fridge, s)

P (sink, s)⇐⇒Clean(sink, s) ∧ P (floor, s)∧
P (counters, s),

(10)

leading to the partial order shown in Figure 3.

Theorem 4 (L≤P
= LP+traj for Kitchen Cleaning)

For the Kitchen Cleaning domain, any shelling order of ≤P

has an accompanying P -increasing plan with the same ele-
ment sequence.

sink

counters floor garbage

stove fridge

Figure 3: ≤P for Kitchen Cleaning.

Proof: Say instead there was a shelling order α ∈ L≤P

and α 6∈ LP+traj . This means α is a possible shelling of
the poset in Figure 3, but no plan exists which would strictly
increase P and produce the elements in that order. Identify
the first element xi ∈ α for which a plan cannot be found.
xi cannot be either stove or fridge, since these are always
achievable and will not remove elements from P . If xi were
the floor then both fridge and stove must be before xi in
α, in order to respect the order, and therefore in P . In that
case, floor is achievable, without threatening to take ele-
ments out of P . If xi = counters, then fridge would have
to precede it, and then it would be achievable without caus-
ing any problems. Similarly, if xi were garbage, fridge
would already have to be before xi, hence put into P al-
ready, so that we are free to achieve garbage. Finally, if
xi = sink, then counter, floor, stove, and fridge would
have to be before it, therefore in P , and we are free to clean
the sink.

�

It seems that the Kitchen Cleaning example above ex-
hibits the antimatroid property solely because it avoids the
two previously mentioned pitfalls that could prevent L≤P

⊆
LP+traj : The first is it does not have to worry about precon-
ditions as any of the actions which achieve part of the goal
are immediately achievable; we can put any x ∈ Objects in
P , in any situation. The second has to do with how P orders
goals so that they do not get clobbered. Say putting x into
P takes some other element w out of P . Then it must be the
case that x ≤P w. The intuition is that if achieving x could
harm w, then we do it before w, so that we won’t have to
redo w. For example, with Kitchen Cleaning, cleaning ei-
ther the stove or fridge will dirty the floor, so to prevent
this, both stove and fridge are ≤P floor.

Theorem 5 (When L≤P
= LP+traj .)

Let T be a domain theory such that goal(s) ≡ (∀x)P (x, s)
and ext(P, S0) = ∅. Then if:

1. accomplishing P for any x is immediately possible, that
is:

(∀x s)(∃a)P (x, res(a, s)), and (11)

2. when putting x into P takes w out of P , then x ≤P w:

(∀s a) [P (x, res(a, s)) ∧ P (w, s) ∧ ¬P (w, res(a, s))
=⇒ x ≤P w],

(12)

then L≤P
= LP+traj .

Proof: By Theorem 3, it is enough to show that L≤P
⊆

LP+traj . Pick any α = (x1 . . . xn) ∈ L≤P
but assume

instead that α 6∈ LP+traj . Let xi ∈ α be the first element
such that (x1 . . . xi−1) ∈ LP+traj but (x1 . . . xi−1xi) 6∈
LP+traj . This means that we have a set of actions that add
x1, . . . , xi−1 to P in that order, up to the situation si−1, but
xi cannot be a witness for extending P further. Formally:

¬(∃a)[(∀w)[P (w, si−1) =⇒ P (w, res(a, si−1))] ∧
¬P (xi, si−1) ∧ P (xi, res(a, si−1))]

⇐⇒ (∀a)[(∃w)[P (w, si−1) ∧ ¬P (w, res(a, si−1))] ∨
P (xi, si−1) ∨ ¬P (xi, res(a, si−1))]

(13)

Also, since LP+traj records the order of how all the
elements of Objects are added to P , we know that
(x1 . . . xi−1) ∈ LP+traj means that they are exactly
the elements in P at si−1: (∀y ∈ Objects)[y ∈
{x1, . . . , xi−1} ⇐⇒ P (y, si−1)]. Now we split on the
two cases on whether xi = x1.

1. If xi = x1, then we have

(∀a)[(∃w)[P (w,S0) ∧ ¬P (w, res(a, S0))] ∨
P (x1, S0) ∨
¬P (x1, res(a, S0))]

(14)

Since ext(P, S0) = ∅, both the first two dis-
juncts of (14) are false. Therefore we infer that
(∀a)¬P (x1, res(a, S0)). But this is impossible by as-
sumption (1).

2. Otherwise, say xi 6= x1. Pick the action axi

such that P (xi, res(axi
, s)). From (13), we know

either (∃w)[P (w, si−1) ∧ ¬P (w, res(axi
, si−1))], or

P (xi, si−1) ∨ ¬P (xi, res(axi
, si−1)). The second dis-

junct is not true; neither is it the case that P (xi, si−1), as
that would require xi ∈ {x1, . . . , xi−1} or that α con-
tains a repetition which is impossible, as α ∈ L≤P

which
is simple. And of course by definition of axi

we know
P (xi, res(ax1

, si−1)). It remains to show that the first
disjunct is false.
If it were true, then P (w, si−1) and given ¬P (xi, si−1),
we know that ¬x ≤P w. But we also know
that w is some element in {x1, . . . , xi−1} such that
¬P (w, res(axi

, si−1)). Given that P (xi, res(axi
, si−1))

we can infer from the second assumption that x ≤P w, a
contradiction.

�

The gist of Theorem 5 is that ≤P is too weak and re-
strictive to characterize the goal dependencies inherent in
P . It is not strong enough to characterize how preconditions
may depend upon each other, nor how one goal may clobber

another. Furthermore it gives little context-specific informa-
tion, as it is a metric that must hold in all situations and mod-
els. A more general and perhaps fruitful means of studying
P instead is by means of alternative precedence structures.
Already this paradigm has a built-in intuition that the sets
for a given Hx represent the possible enablers for x, that is,
if the elements in some U ∈ Hx have been completed, then
one can complete x. However, instead of constructing these
Hxs from facts that are true in all models and all situations
(as≤P is defined), we instead examine each model and each
situation, and define U ∈ Hx ⇐⇒ all the elements in U
co-occur with x in some pre-goal situation s and model M

of T . The advantage of this approach is that we do not re-
quire models to be categorical, which means we can drop
the requirement that S0 is complete. Studying this means of
representation, and how it correlates with P , is an avenue
for future work.

5 More Ideas Using Shelling
Let us represent a planning problem by the tuple
(S0, A,Objects,G, γ+

Φ
, γ−

Φ
, α), where A is the set of ac-

tions, and for ease of notation we let G = {x1, . . . , xk} ⊆
Objects encode the the goal formula as goal(s) ≡
Φ(x1, s) ∧ . . . ∧ Φ(xk, s). The last part of the tuple, α, is a
placeholder meant to represent a partial plan inherited from
previous transformations. We can think of planning as the
gradual shelling over the space of these tuples, using vari-
ous transformations. In this section we discuss two of them:

1. We say a goal Φ(xi, s) is init-minimal if for some action
a0 ∈ A,

γ+

Φ
(xi, a0, S0) ∧ (∀a, s)¬γ−

Φ
(xi, a, s) (15)

that is, we can make Φ(xi, ·) true in res(a0, S0) and
know that no matter what happens, this part of the
goal won’t ever become false (get clobbered).2 With
such an xi we can reduce our planning problem to
(res(a0, S0), A,Objects,G \ xi, γ

+

Φ
, γ−

Φ
, a0α).

2. A goal Φ(xj , s) is goal-maximal if

(∀s)(∃aj)γ
+

Φ
(xj , aj , s)∧

(∀y ∈ G \ xj)[γ
+

Φ
(y, aj , s) ∨ ¬γ

−
Φ

(y, aj , s)].
(16)

This is much like the map-coloring problem in that no
matter in what situation we end up, we can always find
an action aj to accomplish xj without violating any
already-achieved goals. If we can find a goal-maximal
goal Φ(xj , s), then our plan reduces to (S0, A,G \
xj , γ

+

Φ
, γ−

Φ
, αaj).

These are only two possible ways to shell this space.
There are many other transformations that are possible, and

2Really, we only have to worry that it does not get false over any
possible solution path. By expanding the restriction to the entire
situation tree we make our requirement harder to satisfy but much
easier to handle in logic.

it is most likely that the space will not be a proper antima-
troid, as not all elements will be shelled (but perhaps a ma-
troid). But even if the transformations do not lead to a plan
without search, they could at least lead to a difficult sub-
component minimal in size.

6 Sequences of Actions and the Strong
Measures of Progress

One simple adaptation to the strong measure of progress is
to quantify over sequences of actions:

T |=(∀s)[¬goal(s)=⇒(∃a)[ext(P, s)⊂ ext(P, res(a, s))]]
(17)

This would enable us to quantify progress on a much
larger scale. Instead of having to logically navigate ev-
ery possible plateau and local minimum on our path to the
goal, we could simply use sequences of actions, or macro-
operators, to “jump” over them. The whole purpose of hav-
ing a strong measure of progress is to describe in broad terms
how to get directly to the goal – having sequences of actions
as objects accomplishes this directly. If properly formulated,
we might even be able to have measures of progress for do-
mains with deadlocks, if we can assure that all sequences
purposely avoid deadlocks.

However, we must formulate equations like (17) very
carefully. If a ranges over all sequences of actions, then
the equation above is a tautology – simply take a to be any
viable plan from s. We must carefully decide which action
sequences to invite, as they can easily break the constructive
nature of the measure of progress and ruin our party.

In fact, as soon as we add a sequential operator that
concatenates actions to our domain, we immediately break
(17), as that allows us to formulate the true plan to the
goal. Golog (Levesque et al. 1997), without the concatena-
tion operator “;”, may serve as a good language for talking
about macro-operators, especially because it has the ability
to sense fluents which allows us to distinguish between (and
compactly represent) different conditions. This topic of re-
search is something that must be further investigated.

The Towers of Hanoi is a domain which can benefit from
a proper set of macro-operators. In this problem, there are
three pegs: A, B, and C, and n disks, with disk di of size
i. Initially, the disks are stacked in order of increasing size
on peg A, largest disk on the bottom. The goal is to find a
plan which moves the entire stack to peg C, given that one
can move only the topmost disk dt of a peg, and that it can
only be placed either on top of a disk larger than itself, or an
empty peg.

There are many solutions to this problem, outlined in (Sy-
ropoulos 2002), which include complicated bit encodings.3

We present the traditional recursive encoding for arbitrary
n:

3These encodings are strong measures of progress!

p = solve(n,A,B,C) ⇐⇒
(n = 0 ∧ p = ∅) ∨
(n 6= 0 ∧
p = solve(n− 1, A,C,B);move(A,C);

solve(n− 1, B,A,C))

(18)

The problem of moving n disks from A to C is reduced
to moving the first n− 1 to B, then moving the largest disk
from A to C, and then moving the n−1 to C. The recursive
solution to Towers of Hanoi involves two new ideas; first,
a macro-operator solve(n,X, Y, Z) which has an inductive
parameter, and careful (as in not arbitrary) sequential com-
bination. The macro-operator abbreviates a set of moves we
would rather not enumerate, by induction on its numeric pa-
rameter.

If S is the set of actions {solve(n −
1, A,C,B),move(A,C), solve(n − 1, B,A,C)}, then
quantification of a over S in (17) would lead to a simple
formulation of P :

P (0, s)⇐⇒[On(dn, A, s) ∧
On(d1, d2, s) ∧ . . . ∧On(dn−2, dn−1, s) ∧
On(dn−1, B, s)] ∨ P (1, s)

P (1, s)⇐⇒[On(dn, C, s) ∧
On(d1, d2, s) ∧ . . . ∧On(dn−2, dn−1, s) ∧
On(dn−1, B, s)] ∨ P (2, s)

P (2, s)⇐⇒[On(dn, C, s) ∧
On(d1, d2, s) ∧ . . . ∧On(dn−2, dn−1, s) ∧
On(dn−1, C, s)],

(19)

It would be interesting to see what better measures of
progress are obtained if we added similar kinds of macro-
operators to our other planning domains. One immediate,
curious, side-effect of adding such macros is that they avoid
an explosion in the description of plans. For Towers of
Hanoi, a plan for moving n disks has length Θ(2n), and
since the m-ary strong measure of progress can encode plans
of at most length nm, m must be O(n logn 2), a function of
n! We contrast this with the strong measures of progress
developed in (Parmar 2002b) for Blocksworld and Logistics
World, which has a fixed arity regardless of the number of
objects in the domain. But if we add macros to the Towers
of Hanoi, we can get back a fixed arity measure of progress,
in fact, one whose definition does not change over problem
instances, as shown in (19). One concept we have glossed
over however, is how to efficiently utilize the more concise
measure of progress in (19) and in conjunction with the def-
initions of macro-operators in (18).

7 Conclusions and Discussion
Finding out when map coloring can be done without back-
tracking is an illustrative example for our motivations for
planning – we want to identify the obvious next action to
perform by reasoning, not searching. The strong measure of
progress is supposed to encode this, but how can we discover
these measures in practice? Antimatroids provide some hint

as to the structure which is involved, and we have not yet
exhausted the subject.

The reduction we performed to do backtrack-free map
coloring is applicable to CSPs, and it would be interesting
to see how concepts of arc- and node-consistency relate to
antimatroids. Since CSPs are difficult, we do not imagine
that antimatroids will entirely solve every CSPs, but at least
they can identify and quickly solve some isolated regions of
the problem. We also want to apply this idea of identifying
and solving the easy parts of a problem to planning.

Section 5 makes some forays into how we can shell sub-
goals either after the initial state or before the goal state.
An intriguing notion not explored here would be how one
can add additional, supporting subgoals, much as is done in
partial-order planning, in order to aid the shelling process.
(We may need to add elements to our structures to make
them look like antimatroids.) Adding macro-operators to
aid in the shelling might also be useful.

We find the idea of adding some carefully constructed set
of macro-operators to simplify our measures of progress to
be very intriguing. This is the tack that is used in (Korf
1985), where our measure of progress corresponds to some
total ordering of the conjuncts of a goal. The inductive feel
of the Towers of Hanoi problem could be generalized and
used to make macros for other planning problems. Using
Golog programs as macros sounds especially interesting, be-
cause they can sense and react accordingly, making macros
even more expressive.

Some topics we would like to explore in the future include
how to expand these results to domains that include dead-
locks. Also, there appears to be a duality between having
to enumerate subgoals, and adding macro-operators in plan-
ning. For example, in Towers of Hanoi, without macros our
strong measure of progress’s arity grows in the number of
disks, whereas adding the macro solve(n,X, Y, Z) ensures
it remains of constant size.

A final issue that not discussed here is how we can refor-
mulate planning problems to make them more amenable to
solve. This could involve something as low-level as rewrit-
ing the theory so that the γ±

Φ
(x, a, s)s do not depend on s,

or some overall transformation on the fluents of the domain
so that certain dependencies are more perspicuous (think of
finding a basis in linear algebra).4 A great result would be
a formal connection between antimatroids and means-ends
analysis.

8 Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments. This research has been partly supported by SNWSC
contract N66001-00-C-8018.

References
Appel, K., and Haken, W. 1977a. Every planar map is four
colorable. part i. discharging. Illinois Journal of Mathe-
matics 21:429–490.

4Gaussian elimination, one of the methods for finding a basis,
gives rise to a greedoid.

Appel, K., and Haken, W. 1977b. Every planar map is four
colorable. part ii. reducibility. Illinois Journal of Mathe-
matics 21:491–567.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69(1-2):165–204.
Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and managing combinatorial optimisation sub-problems in
planning5. In IJCAI-01.
Kempe, A. B. 1879. On the geographical problem of the
four colours. American Journal of Mathematics 2(3):193–
200.
Korf, R. 1985. Learning to Solve Problems by Searching
for Macro Operators. Ph.D. Dissertation, Carnegie Mellon
University.
Korte, B., and Lovász, L. 1981. Mathematical structures
underlying greedy algorithms. In Fundamentals of Compu-
tation Theory, volume 117 of Lecture Notes in Computer
Science, 205–209. Springer-Verlag.
Korte, B.; Lovász, L.; and Schrader, R. 1991. Greedoids.
Springer-Verlag.
Levesque, H. J.; Reiter, R.; Lesprance, I.; Lin, F.; and
Scherl, R. B. 1997. Golog: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31(1–3):59–83.
Long, D., and Fox, M. 2000. Automatic synthesis and use
of generic types in planning. In AIPS-00, 196–205.
McCarthy, J. 1982. Coloring maps and the Kowalski doc-
trine6. Technical Report STAN-CS-82-903, Dept Com-
puter Science, Stanford University. AIM-346.
Parmar, A. 2002a. A Logical Measure of Progress for
Planning (Technical Report)7. Technical report, FRG.
Parmar, A. 2002b. A Logical Measure of Progress for
Planning8. In AAAI/IAAI, 498–505. AAAI Press. Technical
report is (Parmar 2002a).
Robertson, N.; Sanders, D. P.; Seymour, P.; and Thomas,
R. 1995. The Four Color Theorem9. Webpage.
Syropoulos, A. 2002. The Towers of Hanoi10. Webpage.

5http://www.dur.ac.uk/˜ dcs0www/research/stanstuff/Papers/
sigpaper.ps

6http://www-formal.stanford.edu/jmc/coloring.html
7http://www-formal.Stanford.edu/aarati/techreports/aaai-2002-

t r.ps
8http://www-formal.Stanford.edu/aarati/papers/aaai-2002.ps
9http://www.math.gatech.edu/˜thomas/FC/fourcolor.html

10http://obelix.ee.duth.gr/˜apostolo/TowersOfHanoi/

