
Preliminary Insights on Temporal Approximation

Aarati Parmar
Department of Computer Science,

Gates Building, 2A wing
Stanford University, Stanford, CA 94305-9020, USA

aarati@cs.stanford.edu

Abstract

In this paper we present some preliminary formulations of
temporal approximations and refinements. These are respec-
tively the processes of abstracting away details about tempo-
ral objects, and the processes of adding more detail to them.
Intelligent robots operating in the world will not only need to
reason temporally, but they will need to be able to approxi-
mate or refine their reasoning as necessary in order to oper-
ate efficiently. The four kinds of refinements/approximations
we study are treating ramifications as internal events, already
proposed in (McCarthy, 2002), elaborations of narratives, ex-
pansions of events, and increasing the predictive capacity of
theories.

1 Introduction
Various aspects of temporal reasoning for AI have been for-
malized, including inertia, hypotheticals, concurrency, etc.
In this paper we enumerate and give preliminary formaliza-
tions of different kinds of temporal approximations and re-
finements. We define temporal approximation as a transfor-
mation of a theory of action and change to another which is
simpler and/or more salient to the task at hand. A temporal
refinement is the opposite transformation and will add more
detail about a sequence of events, or provide explanations
for them. We believe that these mechanisms will be neces-
sary for intelligent robots operating in the real world; there
is so much information available that a robot will need to be
able to abbreviate it in order to operate efficiently. Robots
will also need to be able to refine their theories of the world
to accommodate new phenomena.

The four different kinds of temporal approxima-
tions/refinements we explore in this paper are:

1. Ramifications as internal events. This has already been
introduced in (McCarthy, 2002), and is the idea that we
can interpret static constraints as resolutions of internal
events. We interpret the internal events as imbalances
in the system which move it towards a steady state; a
static constraint simply describes this steady state where
nothing changes.1 McCarthy uses his buzzer example
1We contrast internal events with external events, which are de-

fined by (McCarthy, 2002) as events outside of the given system
which are not explained by the system and usually interpreted as
actions.

to demonstrate that not only is this concept a nice way
to reify and elaborate state changes, but a necessary one
when phenomena do not reach a steady state. More will
be said in Section 3.

2. Elaboration of a narrative. One can further refine a nar-
rative by adding more events to it, either between known
events or at the same time as them. We will call this
an example of a dense refinement because we are pack-
ing in extra event occurrences (and whatever facts fol-
low from these events happening) between known events.
For example, in the Missionaries and Cannibals prob-
lem (McCarthy, 1998), one could further elaborate that
Cannibal1 sneezed while rowing from bank1 to bank2,
and after one of the crossings, all of the characters stopped
and took a nap. A diagram of the general idea is shown in
Figure 1. It would also be interesting to go in the opposite
direction; that is, how to eliminate irrelevant facts about
a sequence of events to get a simpler, but still consistent
story. We address this kind of refinement in Section 4.

e1

e1

e4 e5

e6 e3 e7e2

e2 e3

e5, ,

Figure 1: A diagram of a dense refinement. Circles cor-
respond to situations, arrows are transitions between them.
The eis refer to events occurring at the situation.

3. Expansion of events. An event, say the act of buying a
box of tissue, can be expanded into an entire sequence of
events: walking into a store, finding the tissue, putting
it on the counter, and paying for it (McCarthy, 1999).
We call this an expansive refinement. It differs from the
dense refinement explained earlier in that one situation
is mapped to a sequence of situations. Figure 2 should
demonstrate how it is different. In general a situation s
can be blown up into a more detailed sequence of situ-
ations, which together elaborate the simpler truths of s.
Section 5 has more on this.

s1

s’1 s’ s’ s’ s’ s’2 3 4 5 6

Figure 2: A diagram of an expansive refinement. s1 is ex-
panded to a sequence of situations s′1, . . . , s

′

6.

4. Increasing the predictive capacity of theories. Any
common-sense theory T describing aspects of the world
will be inherently incomplete with respect to some de-
tail or other. That is, T will explain some aspects of the
world, but there will always be other phenomena T can-
not explain. In order to reason about these phenomena, T
will have to be treat them as a “black box,” that is, it will
only be able to accept observations about the inexplicable
phenomena, as opposed to predicting or explaining them.
For example, (McCarthy, 2002) relates the story of the
stuffy room, where the room is stuffy iff both vents vent1
and vent2 in the room are blocked. The article includes
an elaboration where Pat hates to be in a stuffy room and
will unblock vent2 to air out the room. Mike on the other
hand gets cold when a vent is unblocked and will block
it. Without knowledge of Pat and Mike’s preferences,
our theory T will have no ability to infer or explain Pat
and Mike’s actions, and will have to take their actions as
given. However, if the axioms about their behavior are
added to T , T will predict what will happen. By adding
these axioms we have pushed back our curtain of igno-
rance about the rest of the world and increased our pre-
dictive power, depicted in Figure 3. We address this more
in Section 6.

unexplained phenomena ("black box")
outside world

phenomena explained by T

Next Next Result(e1,s)

Result(e2,s)

Next

phenomena explained by T U {more axioms}

Figure 3: The intuitions behind increasing predictive capac-
ity of theories. The unshaded box represents the part of the
world T can predict. The shaded areas are the parts T can-
not explain. T can be expanded to predict phenomena in the
lightly shaded region by adding more occurrence axioms.
External events (lightning bolt) emanate from the shaded ar-
eas and cannot be explained by T .

We can view the temporal approximations/refinements
above as a transformation on a theory that will induce some
other transformation on the (intended) models of our theory.
We hope to introduce formulations that require only very
simple operations on the theory to get the intended models
(like adding axioms).

As for language, we use the situation calculus augmented
with event occurrences. We note that these approximations
should be formalizable in other languages that represent
time and change; we only use this variant of situation cal-
culus because of our familiarity with it and the utility of its
features. Our exposition shares many of the motivations as
in (McCarthy, 2002), although the technical details differ
considerably.

2 Preliminaries
We use the situation calculus which consists of situations,
events, and fluents. Situations are snapshots of the world
which have some temporal extent. Fluents are facts which
hold at a particular situation, and are formalized as relation
symbols with one free situation variable. Result(e, s) is
used to denote the situation resulting from event e occur-
ring in s. For maximum flexibility of interpretation we do
not include any of the arboreal axioms used in various ver-
sions (like Toronto’s) of situation calculus, nor do we in-
clude the induction axiom, although we may find them use-
ful for specific problems. Instead, we add two new sym-
bols to the language of situation calculus: Occurs(e, s) and
Next(s). Occurs(e, s) is a predicate that asserts that event
e occurs in situation s, while Next(s) points to the result-
ing situation after whatever events occur at s. For example
if Occurs(fall(domino), s) then Upright(domino, s) but
¬Upright(domino,Next(s)).

Right off we can see that Occurs allow us to ex-
press concurrent events. Also, Occurs(e, s) differs from
Result(e, s) in that Occurs(e, s) asserts e actually does
happen in s, as opposed to the result if e happened in s.
It may seem incongruous to allow both notions of actual and
hypothetical events, but we believe this is needed to repre-
sent (necessarily) incomplete knowledge of the world; we
can talk about a distinguished actual set of events while still
representing different hypothetical sequences within the lan-
guage, as pointed out by (Pinto, 1998). For example, we can
assert, without inconsistency, both

Occurs(book-ticket(Edmonton),
Result(accept(reviewers, paper)), s)
∧

Occurs(book-ticket(Las V egas),
Result(reject(reviewers, paper)), s),

reflecting the author’s plans to go to Vegas if she does
not have to go to AAAI to discuss this paper. But we
cannot express what events actually do happen in reality.
Occurs(e, s) asserts e occurs in s, but not that s itself is
actual – it could be hypothetical. In order to delineate an ac-
tual sequence of situations we would have to add a predicate
such as Actual(s), introduced in (Pinto and Reiter, 1993).

Our language is that of standard situation calculus, which
includes the three mutually exclusive sorts: Sit, Eve, and
Flu. Throughout this paper we take s to be a situation vari-
able, and e an event variable.
L consists of finitely many relational (fluent) symbols

F (s). We also include a relation Occurs(e, s). In addition
to the usual function Result : Sit × Eve → Sit, we also
include a function Next : Sit → Sit.

We copy much of the notation used in (McIlraith, 2000).
Here we only explain the notation, as we use different ax-
ioms in the sections below. γ+

F (e, s), γ−F (e, s), ν+

F (s) and
ν−F (s) are all abbreviations for simple formulae, which is
a formula of situation calculus in which the only situation
variable in the entire expression is the free variable s. Essen-
tially, a simple formula φ(s) expresses some property φ of a
situation s, instead of a relation between situations. γ+

F (e, s)
abbreviates the conditions for F to hold in Result(e, s),
while γ−F (e, s) the conditions for F not to hold. ν+

F (s) are
the conditions for F to hold in s, while ν−F (s) are those for
¬F (s).

We ignore Poss(e, s) and assume events are axiomatized
so that if the preconditions for e are not met, then nothing
changes: F (Result(e, s)) ⇐⇒ F (s).

Of course, to prevent inconsistencies we cannot have the
conditions cause both F (s) and ¬F (s). This is the con-
sistency assumption referred to in (McIlraith, 2000) and is
formulated in terms of our language in (1), for each fluent
F :

¬[(γ+

F (e, s) ∨ ν+

F (Result(e, s)))∧
(γ−F (e, s) ∨ ν−F (Result(e, s)))]

(1)

Finally, we use some notation and terminology to make
our statements more concise. A sequence of situations is
a sequence s1, . . . , sn, abbreviated s, such that si+1 =
Next(si)∨ (∃e)si+1 = Result(e, s). We define an order <
on situations s and t, where s < t iff there is a sequence of
situations s1, . . . , sn, n > 1 where s1 = s and sn = t. Note
that < is irreflexive. A static constraint is an axiom relating
only facts about one situation s; it is of the form (∀s)φ(s),
where φ is a simple formula.

3 Ramifications as Internal Events
We explore this kind of refinement first, to acquaint the
reader further with our intended interpretations of Occurs
and Next. The idea already explored in (McCarthy, 2002)
is to treat static constraints as internal events. Our methodol-
ogy treats imbalances in a static constraint as internal events
which move in the direction of rectifying the imbalance.2 So

2Our intuition comes from calculus. The forces (internal
events) acting on a system can be interpreted as a gradient (imbal-
ance in the system). Hence the progression of the system through
time can be represented as a set of differential equations. Usu-
ally the solution to the differential equations has some steady-state
equilibrium. So in these terms, our task is, given the steady-state
of a system, to discover the gradient field, or equivalently forces,
which moved the system to the equilibrium. There are many pos-
sible gradient functions, but we believe that the syntactic form of

for example, the Stuffy Room problem has a static constraint
of the form:

Blocked(vent1, s) ∧Blocked(vent2, s) =⇒ Stuffy(s)
(2)

This would be transformed to the event occurrence axiom

[Blocked(vent1, s) ∧Blocked(vent2, s)∧
¬Stuffy(s)]

=⇒ Occurs(Becomes-Stuffy, s),

along with the event effect axiom

Occurs(Becomes-Stuffy, s) =⇒ Stuffy(Next(s)).

We see that this surgery on ramifications allows us to
represent directionality of ramifications without resorting to
special implications or higher-order reasoning. We also note
that the implication in (2) is interpreted by humans as more
than material implication; it is causal, as noted in (McIlraith,
2000). To illustrate this we perform a similar surgery on a
logically equivalent form of (2):

[Blocked(vent1, s) ∧Blocked(vent2, s)∧
¬Stuffy(s)]

=⇒Occurs(Becomes-Unblocked(vent2), Next(s)).

This however corresponds to the spurious change-
minimizing model of the Stuffy Room problem.

Let us describe how to refine a theory with static con-
straints to include internal events. Let F be a fluent symbol.
Tsc is a first-order theory which satisfies the following prop-
erties:

1. Tsc contains effect axioms of the form:

γ+

F (e, s) =⇒ F (Result(e, s))
γ−F (e, s) =⇒ ¬F (Result(e, s))

(3)

2. Tsc also has static constraints of the form:

ν+

F (s) =⇒ F (s)
ν−F (s) =⇒ ¬F (s)

(4)

where each implication is to be read causally. Note that
we can have non-causal constraints by letting F ≡⊥.

3. We also include the proper UNAs for events.

4. Finally, we assume the consistency assumption given
above in (1).

From Tsc we can compute a more refined theory D(Tsc)
in the same language of Tsc, extended with the relation
Occurs(e, s) and function Next(s). D(Tsc) will reinterpret
Tsc, replacing static constraints with internal events. For
each fluent F we also add the events on(F) and off(F) to
our language. D(Tsc) then can be constructed from Tsc in
the following way:

the static constraints gives a clue as to the direction of the gradient
(discussed next).

1. D(Tsc) contains the same effect axioms as in Tsc.

2. For each static constraint ν+

F (s) =⇒ F (s) in Tsc we
have in D(Tsc)

Occurs(on(F), s) ⇐⇒def ν+

F (s) ∧ ¬F (s)

and for each ν−F (s) =⇒ ¬F (s), D(Tsc) contains

Occurs(off(F), s) ⇐⇒def ν−F (s) ∧ F (s).

Hence we have explicitly represented the imbalance in a
static constraint by the occurrence of an event.

3. The same unique names axioms as in Tsc, extended to
cover the new events on(F) and off(F).

4. The consistency assumption (1).

5. We must also relate Occurs to Next. For each fluent F ,
we formalize the definition of on(F) and off(F) by the
“event successor state axiom”:

F (Next(s)) ⇐⇒ Occurs(on(F), s)∨
¬Occurs(off(F), s) ∧ F (s)

Given that D(Tsc) is meant to represent the progression
of the system in Tsc from any s to its steady state along the
trajectory Next(. . . (Next(s))), it makes sense to have a
function which points to the situation where steady state is
reached, if it exists. We define a function Next∗(s), which
points to the first situation after or including s in which the
system has reached quiescence:

Next∗(s) ⇐⇒ def (µt > s)¬(∃e)Occurs(e, t) (5)

A logically equivalent definition of Next∗ is
(µt > s)(∀F)(F (Next(t)) ⇐⇒ F (t)). The ex-
ample of the buzzer shows that it is possible that Next∗ can
be undefined. But when it is defined, it definitely points to
some steady state equilibrium.

The question is whether it is the same as that prescribed
by Tsc, especially under various solutions to the frame prob-
lem. We can attempt to answer this question in the con-
text of (McIlraith, 2000)’s closed form solution to theo-
ries with ramifications. Our theory Tsc will fit (McIlraith,
2000)’s syntactic requirements, as long as it is solitary strat-
ified. That is, we can assign a level to each fluent F so that
for every implication of the form D(s) =⇒ F (s) and
E(s) =⇒ ¬F (s) in Tsc, if the fluent F is of level i, then
the fluents in the formulas D(s) and E(s) all have levels
strictly less than i. If F has level 1, D(s) and E(s) cannot
reference any fluents and cannot say anything about the state
of s. From now on we write a fluent F of level i as Fi.

We write (McIlraith, 2000)’s closed form solution of Tsc

as a theory S(Tsc), which will have successor state axioms
of the form:

Fi(Result(e, s)) ⇐⇒
γ+

Fi
(e, s) ∨ ν+

Fi
(Result(e, s))∨

Fi(s) ∧ ¬γ−Fi
(e, s) ∧ ¬ν−Fi

(Result(e, s))
(6)

with the same UNAs and the consistency assumption. The
solitary stratification guarantees that the terms on the right
hand side containing Result (ν+

Fi
and ν−Fi

), can be rewrit-
ten, using the successor state axioms for the fluents in them,
to not mention Result. Then these axioms will correspond
to true successor state axioms which can be properly pro-
gressed and regressed to one’s heart’s content.

We can apply a similar transformation to D(Tsc), to end
up with a theory S(D(Tsc)) that has the form:

Fi(Result(e, s)) ⇐⇒ γ+

Fi
(e, s)∨

Fi(s) ∧ ¬γ−Fi
(e, s)

Occurs(on(Fi), s) ⇐⇒ ν+

Fi
(s) ∧ ¬Fi(s)

Occurs(off(Fi), s) ⇐⇒ ν−Fi
(s) ∧ Fi(s)

Fi(Next(s)) ⇐⇒ Occurs(on(Fi), s)∨
¬Occurs(off(Fi), s) ∧ Fi(s)

(7)

S(Tsc) computes all changes due to e, both from ef-
fects and ramifications, immediately into Result(e, s).
S(D(Tsc)) on the other hand first only computes effects
into Result(e, s), and then lets ramifications propagate as
internal events, until it reaches quiescence in the situation
Next∗(Result(e, s)).

When Tsc is solitary stratified, we can show Next∗ will
be defined in S(D(Tsc)), and in fact will be Nextn, where n
is the highest level of stratification. The question is however
whether the steady state that is reached in S(D(Tsc)) after
an external event e is applied to the system is the same as
Result(e, s) in S(Tsc). That is, is it the case that:

S(Tsc) |= F (Result(e, s)) ⇐⇒
S(D(Tsc)) |= F (Next∗(Result(e, s))) ?

For level 1 fluents this can be shown to hold, but for flu-
ents at greater levels it is not clear because the internal events
may progress and interact in strange ways. Timing issues
may also arise, in that the values of fluents along the pro-
gression of Next are never all at the required values at the
same time for another fluent to change its value. This richer
treatment of static constraints needs to be studied further.

4 Dense Refinements
In this section we define a dense refinement as when more in-
tervening and even co-occurring events are added to a given
sequence of events. Adding intervening events can add more
detail to a story, but should not refute any parts of the story.
We formalize it as follows:

Let s and t be sequences of situations, and T and T ′ two
theories, such that L(T) ⊆ L(T ′). We say t in T ′ densely
refines s in T if we can find a mapping σ : s → t such that:

1. (∀s, s′ ∈ s)(s < s′ =⇒ σ(s) < σ(s′)): σ is order-
preserving.

2. (∀s ∈ s)(T |= Occurs(e, s) =⇒ T ′ |=
Occurs(e, σ(s))): The events in s must also happen in
t.

3. (∀s1, s2 ∈ s)(σ(s2) = Result(e, σ(s1)) =⇒ s2 =
Result(e, s1)): Our refinement T ′ of T may transform
situation transitions of the form s′ = Result(e, s) to
those of the form σ(s′) = Next(σ(s)), because T ′ is
a more powerful predictor. That is, rather than having to
be told that s′ is the result of e in s, T ′ can predict this.
(We study this idea further in Section 6.)
But, we will not allow transformations in the other direc-
tion: if T can predict that s′ (and associated events) is the
next situation after s, then T ′ must as well, and not re-
sort to suddenly “not knowing” and using Result. This is
what the above formula states.

4. (∀φ ∈ L(T))(∀s ∈ s)(T |= φ(s) ⇐⇒ T ′ |= φ(σ(s)).
Note that only the situations in the image of σ must agree
with their mapped situations in s, and only over the for-
mulas in L(T). It might be interesting to relax this restric-
tion by replacing the equivalence with a right implication.

Intuitively, the subsequence σ(s) is a skeleton of t which
corresponds to the original sequence s modulo the lan-
guage L(T) and possibly some extra events. Requirement 4
will indirectly allow only consistent insertion of events be-
tween those in s. For example, let s be the sequence of
boat-crossings to get three missionaries and three cannibals
across a river subject to the usual constraints. We cannot
consistently elaborate s by inserting one boat-crossing be-
tween two others, because then the boat will be on the wrong
side of the river, and either the inserted event or the one af-
ter it will be inconsistent, so that the fluents across the se-
quences will not match up.

What is important now is to check that this formulation of
dense refinements is correct, and what mileage we can get
out of having such relations in our theory. Instead of hav-
ing two separate theories T and T ′ espouse these different
sequences, we could talk about both sequences within the
theory by putting T and T ′ in different contexts within one
larger theory. It would be interesting then to see how lift-
ing axioms could move between the two representations. It
would also be nice to characterize the forms of T and T ′ that
allow easy specification of dense refinements.

5 Expansive Refinements
We can conceive of a refinement of events where one
event is expanded to a sequence of events, as in the tis-
sue buying example above. So for example, say we
have the trivial sequence of situations s = s1, and
Occurs(Buys(tissue), s1). This act can be refined as the
sequence of events

Occurs(Enter(store), s′1)∧
Occurs(Get(tissue), s′2)∧
Occurs(Put(tissue, counter), s′3)∧
Occurs(Pay(clerk, tissue), s′4).

Instead of being an event, the concept “buys tissue”
becomes a fact (fluent) (process?) about the situations
s′1, . . . , s

′

4.
The immediate formalization of this idea seems trivial;

simply map the situation s1 by fiat to the sequence of situa-
tions s′1, . . . , s

′

4. In order to group these situations s′1, . . . , s
′

4

together we should label them all as situations during which
the tissue-buying is happening. However it seems there is at
least a little fine structure which is being ignored. We would
like to know how we know when an object should be treated
as an event, versus a fluent. Syntax gives us no hints: if we
rewrite fluents F (s) to the form Holds(f, s), they are no
different (syntactically speaking) from Occurs(e, s), except
that we imagine fluents as having duration and inertia, while
events are point-like and cause change.

However there is a well-known transformation between
events and fluents: (Pinto, 1994) shows that a point-like
event can always be transformed to a one with duration by
mapping it to a fluent whose truth is turned on and off by
point-like events. So we have in our arsenal at least one
known mechanism for expanding events to those with dura-
tion, which might as well be treated as a fluent.

Studying the tense of the verb encoding the event gives us
important clues as well. When “buy” is in the simple tense,
as in “Bob buys a box of tissue” the event is point-like, and
definitely of the form Occurs(e, s). On the other hand, the
statement “Jane is buying a box of tissue,” where “buy” is
in the present progressive tense, corresponds more to the se-
quence of situations s′1, . . . , s

′

4. Other properties of verbs
may be useful in at least deciding whether a verb corre-
sponds to an event or sequence of events. Stative verbs (van
Eijck and Kamp, 1997) are those which describe state rather
than an event. Examples include know, like, wish, etc. Dy-
namic verbs on the other hand describe events. The progres-
sive tense only applies to dynamic verbs, and seems (to the
author at least) to change them to stative ones.

Another dimension to explore is the relation between the
situation s1 and s′1, . . . , s

′

4. Intuitively, the sequence of situ-
ations realizes the event Occurs(Buys(Tissue), s1). That
is, it provides some justification or explanation for the event.
This idea of realizability is the same as that used in construc-
tive mathematics: briefly, an object p realizes a first order
formula φ if it is some effective procedure for showing φ
holds. p can be a proof of φ, or a program that computes
φ, etc. A key goal of exploring such expansive refinements
would be to define some kind of common sense notion of a
sequence of situations realizing another.

Finally, we can go in the opposite direction and regard the
approximation as a compression of situations which are too
close and similar (or irrelevant): if the granularity (Hobbs,
1985) between a set of situations is below a threshold, we
might as well compress them into one. s1 then is a compres-
sion of s′1, . . . , s

′

4 with respect to certain metrics, yet to be
discovered.

6 Increasing the Predictive Capacity of
Theories

In this section we attribute some special intuitive inter-
pretations to Occurs(e, s), Next(s) and Result(e, s). In
particular we contrast the progression functions Next and
Result. As mentioned before, Result is inherently by syn-
tax a hypothetical function, in that it describes the result of
what would happen were e to be applied to s, but it makes
no statement by itself as to whether it does happen in s.

Occurs(e, s) on the other hand, does provide this function-
ality, and in conjunction with Next(s) will give us the re-
sulting situation if e occurred in s.3 Next “knows” what
events occur in s (thanks to Occurs), and can progress s
without any help or outside information.

We further stress this point by considering the discussion
of internal versus external events given in (McCarthy, 2002).
External events do not have occurrence axioms in the theory,
while internal events do. Hence external events can only be
introduced into the theory by Result and can never be pre-
dicted (which would require the use of Occurs and Next).
External events are therefore identified as being actions per-
formed by actors. In fact, the initiators of an external event
are almost always termed as actors, because their volitions
are not something we can predict.

We stress this difference because it is crucial part of the
semantics behind the refinement we describe in this section,
that of increasing the predictive capacity of theories. Gen-
erally, a sequence of events will have to be “spoon-fed” to a
theory T as a series of statements s2 = Result(e1, s1), s3 =
Result(e2, s2), . . . , sn = Result(en−1, sn−1). Then T ’s
usual task is to entail what facts are true in the sequence of
situations s1, . . . , sn, either with the use of successor state
axioms or some non-monotonic reasoning.

But never does T try to predict this action sequence. Of
course, in many domains, prediction may not make any
sense. But in many narratives many events that are given
can be predicted by T , if only it knew more about the actors
and their motivations in the narrative. Let us present the
example of the stuffy room with Pat and Mike formally.

A non-predictive theory T might contain axioms:

Blocked(v,Result(e, s)) ⇐⇒
(∃p)e = Block(p, v)∨
Blocked(s) ∧ ¬(∃p)e = UnBlock(p, v)

Stuffy(s) ⇐⇒
Blocked(vent1, s) ∧Blocked(vent2, s)

Blocked(vent1, s0) ∧Blocked(vent2, s0)

(8)

Then, given a sequence of situations

s1 = Result(UnBlock(Pat, vent2), s0),
s2 = Result(Block(Miket, vent2), s1),
s3 = Result(UnBlock(Pat, vent2), s2), . . .

the only extra information T can provide is that
Stuffy∧Blocked(vent2)∧Blocked(vent1) in s2, s4, . . .
and ¬Stuffy ∧ ¬Blocked(vent2) ∧ Blocked(vent1) in
s1, s3, But if T had more axioms about Pat and Mike’s
preference, it could predict this narrative. Consider adding
the event occurrence and successor state axioms in (9) to T :

3Note that Occurs still is not meant to assert that e actually
happens in the world; s itself could be hypothetical.

Stuffy(s) ⇐⇒ Occurs(UnBlock(Pat, vent2), s)
¬Stuffy(s) ∧ ¬Blocked(vent2, s) ⇐⇒

Occurs(Block(Mike, vent2), s)
¬Stuffy(s) ∧ ¬Blocked(vent1, s) ⇐⇒

Occurs(Block(Mike, vent1), s)

Blocked(v,Next(s)) ⇐⇒
(Blocked(s) ∧ ¬(∃p)Occurs(Block(p, v), s))∨
(∃p)Occurs(UnBlock(p, v), s)

(9)

Now, the sequence s0, Next(s0), Next2(s0),
Next3(s0), . . . will mirror and predict the narrative
s0, s1, s2, s3, The motivations of Pat and Mike are
nothing but black boxes in T , but are revealed and then
predicted along the Next sequence in T ∪ (9), all by
adding a few axioms using Occurs and Next.

Another Drosophila is flipping a fair two-sided coin. We
can write and solve a complicated set of physics equations
that will describe and predict the result of the coin flip, but
for most of us it is easier and more practical to treat the
physics as a black box, and either take the coin’s end state
as given, or as the result of a probabilistic process. One
can use our approach to provide foundations for how non-
deterministic (probabilistic) methods are often just an ap-
proximation to a more complicated deterministic inference.

7 Conclusions and Discussion
In this paper we have guided the reader through preliminary
formalizations of some temporal approximations and refine-
ments that will be necessary for intelligent robots operating
in the world. Hopefully we have illustrated how these mech-
anisms implement some important and interesting modes of
reasoning. Of course we do not mean to tease the reader with
our very incomplete results, and mean to say much more
about all of these concepts in the near future.

8 Acknowledgments
The ideas in this paper are the fruits of extensive discussions
with John McCarthy and Sheila McIlraith.

References
Hobbs, J. R. (1985). Granularity. In International Joint
Conference on Artificial Intelligence (IJCAI’85), pages
432–435.
McCarthy, J. (1998). Elaboration Tolerance4. In In Pro-
ceedings of the Fourth Symposium on Logical Formaliza-
tions of Common Sense Reasoning.
McCarthy, J. (1999). Personal communicaton.
McCarthy, J. (2002). Actions and Other Events in Situation
Calculus5. In Proceedings of KR 2002. To be published.
McIlraith, S. (2000). An axiomatic solution to the ramifi-
cation problem. Artificial Intelligence, 116:87–121.

4http://www-formal.stanford.edu/jmc/elaboration.html
5http://www-formal.stanford.edu/jmc/sitcalc/sitcalc.html

Pinto, J. (1994). Temporal Reasoning in the Situation Cal-
culus6. PhD thesis, Dept. of Computer Science, Univ. of
Toronto.
Pinto, J. and Reiter, R. (1993). Temporal reasoning in logic
programming: A case for the situation calculus. In Pro-
ceedings of the Tenth International Conference on Logic
Programming, pages 203–221.
Pinto, J. A. (1998). Occurrences and Narratives as Con-
straints in the Branching Structure of the Situation Calcu-
lus7. Journal of Logic and Computation, 8:777–808.
van Eijck, J. and Kamp, H. (1997). Representing discourse
in context. In van Benthem, J. and ter Meulen, A., editors,
Handbook of Logic and Language, pages 180–237. North-
Holland.

6http://www.cs.toronto.edu/cogrobo/jpThesis.ps.Z
7http://citeseer.nj.nec.com/241020.html

