
A Logical Measure of Progress for Planning

Aarati Parmar
Department of Computer Science

Stanford University
Gates Building, 2A Wing
Stanford, CA 94305-9020
aarati@cs.stanford.edu

Abstract

Heuristic search planners are so far the most successful. Al-
most all use as their heuristic an estimate of the distance to a
goal state. We formalize a logical measure of progress, de-
fined as a predicate P (x̄, s) true of objects x̄ at a situation s.
Actions which increase P ’s extension are guaranteed to move
closer to a goal situation, so that P enables us to form plans
without search. One example of a measure of progress is the
concept of final position used in BlocksWorld. It is not clear
how to find a P for an arbitrary domain, so instead we iden-
tify three different classes of domains and conditions which
allow us to construct a measure of progress.
An obvious P will not deliver optimal plans, but it should
encode plans which are “good enough.” Our paradigm is en-
tirely within first-order logic, allowing us to extend our results
to concurrent domains and those containing non-trivial state
constraints. It turns out P not only encodes goal orderings,
but subgoal orderings. P also gives rise to a strategy func-
tion a(s) which can be used to create a universal (complete)
teleo-reactive (TR) program. Given the fact that P -increasing
actions will never require backtracking, this TR program can
be a powerful on-line planner.

1 Introduction
Planners that use heuristic search have been the most suc-
cessful to date, garnering four out of the top six spots in
the recent AIPS 2000 planning competition (Bacchus 2000).
These planners reduce planning to heuristic search, where
the heuristic estimates the distance to the goal state. Most
use ADL operators, which not only express what STRIPS
can, but also disjunctive preconditions, conditional effects,
and quantification.

The planners mentioned above all use some estimate of
distance to the goal, derived from a relaxed version of
the plan, where operators’ delete lists are ignored. How-
ever, they use slightly different heuristics, in different ways.
HSP2 (Bonet & Geffner 2001) employs a strategy of differ-
ent heuristic functions, simultaneously. MIPS (Edelkamp &
Helmert 2001) uses a symbolic heuristic search, where an
estimate of the goal distance is associated with each propo-
sition, and combined accordingly. If a domain looks like a
route-planning or resource allocation problem, STAN4 (Fox

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

& Long 2001) cleverly estimates a distance heuristic that
takes advantage of the domain structure. FF (Hoffmann
2001a), the top heuristic planner in the competition, uses
GraphPlan to compute its estimate, which automatically
takes into account positive interactions between goals.

Heuristic search planners are extremely effective. How-
ever, the heuristics used are not very elucidating; they only
estimate a distance to a goal, without giving any motivation
in terms of the structure of the domain. In this paper we
define a logical measure of progress, that not only produces
an action leading directly towards the goal, but also explains
why it works, in terms of properties of the domain. Our av-
enue of research is orthogonal to the current state of the art
in planning; we are more interested in understanding what
properties of domains lead to efficient planning rather than
finding faster and better algorithms.1

We follow the epistemological approach proposed
by (McCarthy 1959) regarding the Advice Taker: “behav-
ior will be improvable merely by making statements to it,
telling it about its symbolic environment.” Intelligent robots
operating in the world will need to identify and take advan-
tage of regularities in the world in order to reason efficiently.
This research is one step towards this goal.

This work can also be viewed as a bridge between do-
main independent and dependent planning. We share the
motivation of the creators of TIM (Long & Fox 2000), in
that discovering domain-specific heuristics from a domain’s
structure, is an important task for planning, and AI. While
TIM identifies generic types, we find a logical measure of
progress within the domain.

Before continuing we discuss some related research. The
other top planner in AIPS 2000 is TALplanner (Doherty
& Kvarnström 2001), a forward chaining planner guided
by first order temporal formulas. This approach retains
a high level of expressivity and control, without damag-
ing performance. Our logical measure of progress could
be used as control formulas for TALplanner, avoiding the
need for a user to define them.2 (Sierra-Santibañez 2001)

1(Hoffmann 2001b) finds properties leading to efficiency based
on the topology of the search space (in terms of local minima,
plateaus, etc.); we want to find properties based upon the structure
of the domain (in terms of local predicates).

2One of the reviewers points out that finding a measure of
progress could be just as much work as writing a proper control

uses a declarative formalization of strategies for action se-
lection. The approach utilizes user-defined action selec-
tion rules of the form φ(x̄, a, b, s) =⇒ ψ(a, b, s), where
ψ(a, b, s) = Good(a, s) |Bad(a, s) |Better(a, b, s). The plan-
ner then uses these categorizations to search. Our approach
will give reasons why a particular action is Good or Bad.

More details, including full proofs, may be found in the
technical report (Parmar 2002).

2 Preliminaries
The language of a planning domain traditionally includes
some finite set of objects Objects and predicates {p(x̄)}. A
planning problem consists of predicates true of the initial
state I, a goal formula G, and a set of STRIPS or ADL
operator schema O. We translate this specification into a
theory T of first-order logic, using the situation calculus.3

We use first-order logic, instead of STRIPS or ADL, for the
greater expressivity and because logic provides a more gen-
eralizable framework, addressed more in the Conclusions.
The language of T has three sorts, Situations, Actions, and
Objects:

1. Objects: One of the crucial assumptions made throughout
this paper is that our domain has finitely many objects.
Hence T has a domain closure axiom (DCA) of the form:
(∀x)[x = x1 ∨ ... ∨ x = xn], along with a unique names
axiom over these objects: UNA[x1, ..., xn].

2. Predicates: Only one fluent relation Φ(ȳ, s) is used in T ,
assuming each original predicate can be coded by defin-
ing Φ(code(p), x̄, s) for each p(x̄), where code(p) is a tuple
of object constants.4 Φ(ȳ, s) which do not code a par-
ticular fluent, are defined to be >. Φ provides a single
handle to talk about any fluent. In this way Φ is similar
to the well-known situation calculus predicateHolds(f, s)
which asserts that fluent f is true in situation s.

3. Initial state: I, the initial state, is mapped to S0, the initial
situation. All facts true in the initial state are true of S0.

4. Goal formula: goal(s) abbreviates the goal formula G.

5. Operators: An action a(ȳ) corresponds to each operator
schema o(ȳ). Any ADL operator can be translated to a
successor state axiom of the form:

Φ(x̄, res(a(ȳ), s)) ⇐⇒ γ+

Φ
(x̄, a(ȳ), s)∨

(Φ(x̄, s) ∧ ¬γ−
Φ

(x̄, a(ȳ), s)),

where γ+

Φ
(x̄, a(ȳ), s) is a fluent formula abbreviating the

conditions under which Φ(x̄, ·) is true after a(ȳ), while
γ−
Φ

(x̄, a(ȳ), s) are those where Φ(x̄, ·) becomes false. Suc-
cessor state axioms are written such that the truth of
Φ(x̄, res(a(ȳ), s)) is only a function of the fluents true at s
and are thus Markovian. While we assume the number of

formula. If this is the case, our approach will at least provide some
foundations for how to construct the control formula in the first
place.

3We abbreviate res for result.
4We assume our domain includes at least two object constants.

The reason why fluents are coded using object constants will be
apparent when we define our measure of progress.

Objects is finite, we make no such restriction on the num-
bers of action schema (which can even be uncountable).
Poss(a, s), used to abbreviate action preconditions, is
omitted. Instead the γΦs are written such that when
¬Poss(a, s) holds, Φ(x̄, res(a(ȳ), s)) ⇐⇒ Φ(x̄, s). Inde-
terminacy of inapplicable actions is replaced with inertia,
so that the entire tree of situations is utilized, minimizing
technical complications.

For the rest of this paper assume T is a domain theory
satisfying the constraints given above.

3 A Strong Measure of Progress
We are motivated by the well-known idea of final position
used in BlocksWorld planning. A block is in final position
if the object it is on is the object it is on in the goal state,
and that object is in final position. The table is always in
final position. This strategy avoids the Sussman anomaly by
building towers from the bottom up.

Final position is a good measure of progress, because
putting something into final position will lead us closer to
the goal. It also identifies objects so that putting some-
thing into final position will not prevent the completion of
the other goals. We will never have to backtrack on any
action that increases the extension of final position. Final
position is a sort of Dynamic Programming for AI – it iden-
tifies optimal substructure to promote tractable solutions to
a problem.

Our logical measure of progress is generalized as a sim-
ilar predicate over objects in the domain. Increasing its ex-
tension will lead us closer to the goal, without undoing any
subgoals. Note that it is a predicate over objects in the do-
main, and not some property relating situations to their [esti-
mated] distance to the goal. The purpose of our construction
is to force our measure of progress to be a function of the
properties of the domain:

Definition 1 (A Strong Measure of Progress)
Let s be a situation variable, x1, ..., xn object variables, and
P (x1, ..., xn, s) a fluent formula. Call P a strong, n-ary mea-
sure of progress with respect to goal(s) if:

T |= (∀s)[¬goal(s) =⇒ (∃a)[ext(P, s) ⊂ ext(P, res(a, s))]]
(1)

ext(P, s) =def {x̄ | P (x̄, s)}. Hence ext(P, s) ⊂ ext(P, s′)
abbreviates (∀x̄)(P (x̄, s) =⇒ P (x̄, s′)) ∧ (∃ȳ)(¬P (ȳ, s) ∧
P (ȳ, s′)).

P captures a very strong notion of progress. If ¬goal(s),
the definition guarantees that there is an action a that strictly
increases the extension of P . Furthermore, when P (x̄, s) is
true for all tuples in the domain, goal(s) holds. An action
which increases the extension of P not only necessarily gets
us closer to the goal, but does so without undoing any other
goals along the way.

Equation (1) assures us that in a domain with finitely
many objects, we can reach the goal situation from any sit-
uation; if T has a strong measure of progress P , then T is

deadlock-free. Intuitively this is obvious as the predicate P
above is strictly extendible in any situation, and if there are
finitely many objects to cover, eventually they must all be
covered, which means by definition the goal is achieved:

Theorem 1
Let P be a strong, n-ary measure of progress. Then, from
any non-goal situation s we can reach a situation satisfying
goal, within |Objects|n − |ext(P, s)| steps.

Proof: Clearly, at s there are |Objects|n − |ext(P, s)| object
tuples not in P . We need to apply at most that many P -
increasing actions to have P be true for all object tuples, at
which point we are at the goal. �

We can replace the existentially quantified variable a in
Equation (1) with the skolem function a(s).5 This a(s) be-
comes our strategy function, mapping situations to actions.
With P , planning is straightforward – we find an action a

strictly increasing the extension of P and apply it. This will
guarantee that we move closer to the goal. By requiring a
strict extension of P with every action, P leads directly to
the goal – no local minima or plateaus clutter our path.

If a domain has a strong measure of progress then it is
deadlock-free. The converse also holds:

Theorem 2
Let T be a planning domain such that, from every non-goal
situation s, there is a finite sequence of actions which will
lead to a goal situation. Then there exists an n and P such
that P is a strong n-ary measure of progress.

Proof Sketch: Let `(s) be the shortest distance from the
situation s to a goal situation. The idea is to construct, for
each n, a fluent formula G(n, s) true of exactly those s for
which `(s) = n. Since `(s) is bounded, we can bijectively
code each object tuple to each value of `(s). Then we define
P (x̄, s) to be true of all tuples whose code is greater than
`(s). The proof relies on the fact that we have finitely many
fluents and objects (so that `(s) is bounded), and that the pro-
gression from s to res(a, s) is only a function of the fluents
at s (so that G(n, s) is well-defined). �

One can see from the details of the construction that the
strong measure of progress defined in this way will generate
optimal plans.

Theorems 1 and 2 indicate that the planning domains
which have a strong measure of progress with respect to goal
are precisely those which are deadlock free (with respect to
goal). This is why P is termed as strong – it is equivalent
to the universal reachability of a goal situation and thus will
not exist in domains with deadlocks.

Another problem is that any domain that is deadlock free
will have a strong measure of progress P , but it does not
necessarily have to be obvious in the sense of (McAllester
1991).6 That is, it may not be immediately evident from

5The Axiom of Choice will be required in case we have un-
countably many actions.

6It is obvious that a king can traverse all squares on a chess-
board; but not that a knight can.

P ’s definition that it is a strong measure of progress with re-
spect to the structure of the domain. A P that is obvious will
be concise, clearly expressed, and meaningful, such as final
position is in BlocksWorld. But unfortunately, un-obvious
strong measures of progress exist, such as obscure encod-
ings of the distance to the goal. For example, Rubik’s cube
is a deadlock-free domain. By Theorem 2, strong measures
of progress must exist for solving the cube, but if any were
obvious, Rubik’s cube would not be the intriguing puzzle it
is.

We believe however that most domains in the real world
do exhibit an obvious strong measure of progress, as hu-
mans plan in them with little search. These domains are
easy because they contain enough structure that the measure
of progress is clear. In the following sections we formalize
what sorts of domain structures give rise to such P . If we
cannot automatically construct an adequate P for a domain,
perhaps we can at least identify these structures, and from
that construct a P .

4 Constructing Strong Measures of Progress
It is not clear how to automatically obtain a strong measure
of progress P for a given theory T and goal. One could use
inductive logic programming or genetic algorithms to look
for definitions of P , and promote obvious solutions by us-
ing the local rule sets of (McAllester 1991) to generate hy-
potheses for P . Or, one could analyze the state-space graph
of small domains for a P which satisfies the constraints, and
try to generalize from there, as pointed out by (Lin 2002).
We note that finding a P will be at least PSPACE-hard, since
finding plans is at least that hard. But the good news is that
once we find a P for a given goal, we can reuse it to construct
any plan with the same (or logically weaker – see (Parmar
2002)) goal, so the cost of finding P is amortized over the
times it is used.

Automatic construction of P is an avenue for future work
which is beyond the scope of this paper. Instead we study
planning domains which admit obvious strong measures of
progress, and distill what properties are fundamental. The
hope is that we can automatically discover these fundamen-
tal properties and perhaps combine them to construct more
complicated, strong measures of progress for arbitrary do-
mains.

4.1 Kitchen Cleaning Domain
In the Kitchen Cleaning Domain posed in (Nilsson 1998),
cleaning any object makes it clean. However, cleaning the
stove or fridge dirties the floor, and cleaning the fridge gen-
erates garbage and messes up the counters. Cleaning either
the counters or floor dirties the sink. The goal is for all the
appliances to be clean and the garbage emptied.

Regardless of the initial state, there is a natural order to
cleaning the kitchen. One should clean the sink last, as we
may dirty it while cleaning other objects. Cleaning the stove
and fridge can safely be done first, as they cannot get dirtied
by any subsequent actions. The successor state axioms of
TKC and goal are shown in Equation (2). Φ(x, s) represents
“x is clean,” except when x = garbage, in which case it
means the garbage is not empty.

goal(s) ≡abbrev Φ(fridge, s) ∧ Φ(stove, s)∧
Φ(floor, s) ∧ Φ(counters, s)∧
Φ(sink, s) ∧ ¬Φ(garbage, s)

Φ(fridge, res(a, s)) ⇐⇒ a = c(fridge)∨Φ(fridge, s)
Φ(stove, res(a, s)) ⇐⇒ a = c(stove) ∨ Φ(stove, s)
Φ(floor, res(a, s)) ⇐⇒ a = c(floor)∨

Φ(floor, s) ∧ ¬(a = c(stove) ∨ a = c(fridge))
Φ(counters, res(a, s)) ⇐⇒ a = c(counters)∨

Φ(counters, s) ∧ ¬(a = c(fridge))
Φ(sink, res(a, s)) ⇐⇒ a = c(sink)∨

Φ(sink, s) ∧ ¬(a = c(counters) ∨ a = c(floor))
Φ(garbage, res(a, s)) ⇐⇒ a = c(fridge)∨

Φ(garbage, s) ∧ ¬(a = empty-garbage)
(2)

An obvious notion of progress PKC would clean appli-
ances in the order suggested above. But how do we come
up with such a notion automatically? Here is one approach:

4.2 A Measure of Progress for Kitchen Cleaning
Assume goal(s) ≡abbrev Ψ(x1, s) ∧ ... ∧ Ψ(xn, s), where Ψ
appears positively. The successor state axioms are rewritten
in terms of Ψ, and the positive and negative causes for Ψ(x, ·)
under a are denoted by γ+

Ψ
(x, a, s) and γ−

Ψ
(x, a, s). For the

Kitchen Cleaning Domain, Ψ(x, s) ≡ Φ(x, s), except that
Ψ(garbage, s) ≡ ¬Φ(garbage, s).

Definition 2 (<P ordering)

x <P y ≡def (∃a s)[γ+

Ψ(x, a, s) ∧ γ−Ψ (y, a, s)]

This ordering suggests we should make Ψ(x, s) true be-
fore Ψ(y, s), since in accomplishing Ψ(x, s) it is possible that
we could make Ψ(y, s) false. <P is a shortsighted, weak-
ened version of the reasonable ordering relation ≤r pre-
sented in (Koehler & Hoffmann 2000).

Definition 3 (Psimple)
Psimple is one of the simplest constructions we can produce:

Psimple(x, s) ⇐⇒ Ψ(x, s) ∧
∧

y<P x

Psimple(y, s)

Definition 4 (Well-founded Relation)
A relation ≺ is well-founded on a set S if every nonempty
subset A ⊆ S contains a ≺-minimal element:

(∀A ⊆ S)[A 6= ∅ =⇒ (∃x ∈ A)(∀y ∈ A)[¬y ≺ x]]

With these definitions, we can prove when Psimple is a
strong measure of progress:

Theorem 3 (Psimple is a Strong Measure of Progress.)
Assume that T entails that <P is well-founded over Objects,
and for any situation s, every <P minimal element v has an
action av such that γ+

Ψ
(v, av, s). Then Psimple is a strong

measure of progress.

Proof Sketch: If ¬goal(s), (∃x)¬Psimple(x, s).
The <P -minimal element v over the non-empty set
{x | ¬Psimple(x, s)} is the extra object moved into Psimple

using action av. All other objects are guaranteed to stay in
Psimple due to how Psimple is defined, with the help of the
well-founded rule of induction. �

In practice the above requirements are not too restrictive.
The well-foundedness of<P is the same as requiring that ev-
ery set A of objects contains one “protected” object v, such
that we can make Ψ(y, res(a, s)) hold for any y ∈ A without
causing Ψ(v, res(a, s)) to be false. The well-foundedness
hints at the ordering of putting objects into P so that they
won’t ever have to be taken out.

The additional requirement that Ψ(v, res(av, s)) be
achievable is also not too restrictive. Usually we plan in
spaces where actions “chain,” that is, for every action a there
is another action bwhich enables a and doesn’t do much else.
When actions have no prerequisites this is immediately sat-
isfied.

From Theorem 2 we know the Kitchen Cleaning Domain
has a strong measure of progress. We include it here, con-
structed by means of Definition 3 and Theorem 3, for the
reader’s benefit:

PKC(fridge, s) ⇐⇒ Ψ(fridge, s)
PKC(stove, s) ⇐⇒ Ψ(stove, s)

PKC(counters, s) ⇐⇒ Ψ(counters, s) ∧ PKC(fridge, s)
PKC(floor, s) ⇐⇒ Ψ(floor, s) ∧ PKC(fridge, s)∧

PKC(stove, s)
PKC(garbage, s) ⇐⇒ Ψ(garbage, s) ∧ PKC(fridge, s)

PKC(sink, s) ⇐⇒ Ψ(sink, s) ∧ PKC(floor, s)∧
PKC(counters, s)

We have shown how to generate a strong 1-ary measure of
progress, and we can generalize this for any n by replacing
single variables above with tuples of variables. Note that
the assumptions for Theorem 3 must be proven within T ,
which means extra facts (static constraints, for example) can
be used to verify the assumptions.
TKC is extremely basic. There are no preconditions for

any action – each is immediately achievable. Hence none
of the goals need to be regressed through their precondi-
tions. This lack of regression is demonstrated by the fact
that the measure of progress, PKC , has the same arity as Ψ –
the<P relation encodes dependencies between each goal, so
the only state left for PKC to record is whether it has achieved
its part of the goal or not.

5 A Tiered Measure of Progress
In this section we present another template for domains
where goals need to be regressed, but the goals are all uni-
form. By uniform, we mean that there is one sequence ā(x̄)
of action schema, such that each goal conjunct can be made
true by applying some subsequence of ā, with the proper in-
stantiation. We also assume that we can achieve some goal
conjunct without negatively interfering with the rest. A do-
main that fits this description is the Logistics World (Veloso
1992), where packages are transported between cities by air-
planes and around cities by trucks. Any sub-sequence of

sending a truck to a package’s location, picking it up, driv-
ing it to the airport, putting it on a plane, flying it to its des-
tination city, loading it onto a truck, and then delivering it
will put any package in its goal location. If we ignore goal
locations for the trucks and planes we do have uniformity.

We formalize the properties described above in logic:

Definition 5 (Tiered Uniformity)
A planning domain T has the tiered uniformity char-
acteristic if there exists a collection of fluent formulas
Θ1(x, s), ...,Θn(x, s) such that:

1. goal(s) ≡def

∧
x

Θn(x, s)

2. The Θi(x, s) are a partition, in particular, (∃k)Θk(x, s),
and Θi(x, s) =⇒ (∀j 6= i)¬Θj(x, s).

3. If there is an object z such that ¬Θn(z, s) (goal in-
complete), then (∃a)[(∃x i j)[Θi(x, s) ∧ Θj(x, res(a, s)) ∧
j > i] ∧ (∀y k l)[Θk(y, s) ∧Θl(y, res(a, s)) =⇒ k ≤ l]].

Θn defines the fluent formula by which the goal may
be expressed. The second requirement formalizes the no-
tion that the sequence Θ1(x, s), ...,Θn(x, s) represents the
stages through which x may traverse on its way to its goal
Θn(x, s). The final requirement says that if not all objects
have reached Θn, then we can find a object x at state i, and
we can move it up to a higher state Θj , without hurting the
positions of other objects, and possibly making them better.

Definition 6 (Ptiered)
Assume T has the tiered uniformity characteristic. Then de-
fine for each i ∈ [1, n− 1],

Ptiered(x, i, s) ≡def Θi(x, s) ∨ Ptiered(x, i+ 1, s)
and Ptiered(x, n, s) ≡def Θn(x, s)

Each number is just a code for some of tuple of objects,
thereby staying within our finite domain restrictions.

Each tier Ptiered(x, i, s) corresponds to achieving the ith
goal on each object x’s path. If Θj(x, s) holds, that is, the
object is already at level j, then Ptiered(x, i, s) holds for all
i ≤ j. This encoding will obey the definition in Equation
(1):

Theorem 4 (Ptiered is a strong measure of progress.)
If T has the tiered uniformity characteristic, then Ptiered, de-
fined above, is a strong measure of progress.

Proof Sketch: The proof is just a straightforward applica-
tion of Definitions 5 and 6 to Equation (1). �

The problem of constructing a strong measure of progress
for domains with tiered uniformity is pushed back to finding
such tiers obeying the requirements of Definition 5. This is
still a difficult problem, which will require the use of pow-
erful domain analysis techniques. Note that the tiers consti-
tute a partition which is mutually exclusive to the extent that
advancing one object forward through stages will at worst
leave other objects alone and at best push them forward as

well. Perhaps we can take advantage of the mutual exclu-
sion information used in planners such as GraphPlan to ex-
tract the tiers we require. Or, if we suspect a domain has the
tiered uniformity property, we could run a known planner to
solve Θn(x, s) for an arbitrary object x, and then test if the
stages x proceeds through in the plan satisfy Definition 5.7

Theorem 5
Consider a planning problem in the Logistics World (Veloso
1992), with goal

∧
pi
At(pi, li, s), where pi are packages and

li goal locations. Then we can find a strong measure of
progress PLW of the form in Definition 6.

Proof Sketch: We can define our Θis as the stages of mov-
ing an arbitrary package to its goal location (being at a non-
goal location, no truck nearby; at the non-goal location, with
truck nearby; in the truck; ...). Clearly these Θis will form a
partition, and one can show that they obey requirement 3 in
Definition 5 by reasoning by cases. �

It turns out many other domains have the tiered uniformity
characteristic, including the Gripper, AI-office, Ferry, and
Briefcase domains.

Before proceeding, we introduce a useful method for
combining two different strong measures of progress. This
will ameliorate the constraint that the goals be uniform,
since we can construct strong measures of progress for dif-
ferent kinds of goals, and then combine them:

Theorem 6 (Combining strong measures of progress)
Let P be a strong measure of progress with respect to
goalP (s), and Q with respect to goalQ(s). Further assume
that P -increasing actions do not affect Q’s extension nega-
tively and vice versa. Then the predicate defined as:

R(0, x, s) ≡def P (x, s) and R(1, x, s) ≡def Q(x, s),

with R(i, x, s) ≡ > for i different from 0 and 1, is a strong
measure of progress with respect to goalP (s) ∧ goalQ(s).

Proof Sketch: The proof is a direct application of the defi-
nitions of P and Q to Equation (1). �

If goals for two different types of objects are non-
interacting, then we can formulate measures of progress for
each independently, and then combine them.

6 Orthogonal Measures of Progress
In this section we show how we can construct a measure of
progress based on orthogonal measures of progress. By “or-
thogonal” we mean we have predicates P (x, s) and C(x, s),
and while we prefer to increase P , sometimes it is not possi-
ble and our only option is to work on C. Thankfully, contin-
ually increasing C will lead to a point where we can again

7There are much more complicated versions of Logistics World
where the tiered uniformity is not clear, or does not exist. If we
limit a truck’s capacity, we still have a strong measure of progress
because we can drop off packages when necessary. If we add a fuel
component, we simply refine our P to fuel up when the tank gets
low. But if we only provide a finite amount of fuel, we could have
deadlocks in the space (Helmert 2001).

increase P . Intuitively, P -increasing actions are meant to
move directly to the goal, while C-increasing ones do not,
instead sidestepping or removing obstacles to the goal.

BlocksWorld exhibits this characteristic. P defined as fi-
nal position cannot by itself be a strong measure of progress,
because its extension cannot always be increased (blocks
could be in the way). But we can always move these of-
fending blocks out of the way, onto the table, (in C) until
we can put a block into final position P . Any instance of
BlocksWorld can be solved using these two kinds of actions.

We can also visualize this phenomenon as traversing a
contour map on P and C. When possible, we choose ac-
tions which move directly up the P -gradient to increase its
extension. However at some situations it is not possible to
move “up”, and instead we move “sideways” increasing C.8

A graphical depiction of this with respect to BlocksWorld is
given in the left side of Figure 1, and defined below:

Barrier

C

B

A
B

A

B
CA

C

A B
C
A

C
B

goal

|P| |P|

|C||C|

initial initial

robot

goal

P+,C−

C+,P+C+
C+,P+

P+,C−

P+,C−

C+

P+,C−*

Figure 1: The left graph shows how the orthogonal measures
of progress lead us to the solution. Note how they also avoid
the Sussman anomaly. The right graph shows how the exact
same ideas can be used to do robot motion planning.

Definition 7 (Orthogonal Measures of Progress)
P and C are orthogonal measures of progress if they satisfy:

¬goal(s) =⇒
(∃aP)[ext(P, s) ⊂ ext(P, res(aP , s)) ∧

(∀w)[C(w, s) ∧ ¬C(w, res(aP, s)) =⇒
P(w, res(aP, s))]] ∨

(∃aC)[ext(P, s) = ext(P, res(aC , s)) ∧
ext(C, s) ⊂ ext(C, res(aC , s)) ∧
(∀w)[¬C(w, s) ∧C(w, res(aC, s)) =⇒

¬P(w, s)]]

The definition is a lexicographic ordering over P and C,
except for the parts in bold, which stipulate that any loss inC
due to a P -increasing action must be made up by an increase

8It is possible to have available at a situation both a P -
increasing action aP and a C-increasing action aC . If we stub-
bornly prefer aC over aP we will still reach a (less efficient) solu-
tion; eventually we will get to a point where C’s extension is full
and cannot be increased, in which case aP will be the only action
available.

in P , and the only objects which can be moved into C in a
C-increasing action must not be in P .

We can encode P and C as a binary predicate, which does
in fact satisfy Equation (1):

Theorem 7
Let P and C be orthogonal measures of progress. Define:

R(0, x, s) ≡def C(x, s) ∨R(1, x, s)
and R(1, x, s) ≡def P (x, s),

with R(n, x, s) ≡def > for all other possible values for n.
Then R(x, y, s) is a strong measure of progress with re-

spect to goal.

Proof Sketch: The proof is a straightforward application of
Definition 7 and Equation (1). �

The deadlocked sets of blocks defined in (Gupta & Nau
1991) correspond to the situation where we cannot increase
P , but can increase C, thus resolving the deadlock. The form
of R and Theorem 1 reassures us of the well-known result
that any plan following our strategy will take at most 2m
steps, where m is the number of misplaced blocks in our
domain.9

This orthogonal notion can be generalized to multiple
predicates. It applies to other domains as well. For exam-
ple, in robot motion planning, P represents the greedy act of
moving directly towards a goal. If there were no obstacles,
this would be a strong measure of progress. In the presence
of obstacles, C, which directs the robot to move around an
obstacle, will be required as shown in the right side of Fig-
ure 1.10

7 Conclusions and Discussion
In this paper not only have we demonstrated a new paradigm
for expressing a logical (as opposed to numeric) measure of
progress for planning, but have shown how to actually con-
struct one for certain kinds of domains. The intuitions be-
hind our measure of progress reflects those of a human’s,
and by the construction proving Theorem 2, we know strong
measures of progress can express optimal plans. We prefer
obvious strong measures of progress however because they
are more likely to elucidate the structure of domain. But
for non-trivial domains, obvious measures of progress can-
not be optimal. This is for the same reason an NP-complete
problem is so difficult; if it were obvious how to exploit its
structure to generate efficient solutions, the problem would
be easy to solve. Nevertheless, we believe obvious measures
of progress will generate “good enough” plans, for two rea-
sons. First, by definition they divide up the domain to pro-
mote efficiency; subgoals are never undone. Secondly, they

9Remember that R(·, s) can only be false on the tuples 〈0, x〉
and 〈1, x〉.

10Technically, Figure 1 is incorrect for the robot example; the
P -gradient instead of pointing up should always point towards the
goal, while the C-gradient will be orthogonal to it. Pictorially, the
P -gradient will be rays pointing toward the goal location, while the
C-gradient is a set of concentric circles centered around the goal.
Clearly P and C in BlocksWorld play analogous roles in the robot
motion planning domain.

are concisely represented and therefore not too complicated.
This generally means that P has a low arity, so that by The-
orem 1 the plans will not get too long. In short, obvious
measures of progress will take advantage of enough salient
structural features to remain efficient, without getting too
complicated. They will give rise to self-explanatory strate-
gies.

Furthermore, it should be easy to improve measures of
progress, to make them “good enough,” when they do gen-
erate inefficient plans. In general the reason why a plan is
terribly inefficient (such as moving only one ball at a time
in Gripper), is easily articulated, as are the immediate im-
provements. Since our measure of progress is declaratively
specified, encoding these improvements as a more efficient
P is straightforward.

There are a number of restrictions which apply to our
paradigm. The most pressing is the fact that a strong mea-
sure of progress exists only in those domains without dead-
locks. Clearly, some measure of progress exists in domains
with deadlocks; if anything humans discover a measure of
“regress” that is used to avoid deadlock-causing actions.
Equation (1) must be weakened if we want a measure of
progress for such domains. One way is to find a formula
R(s) true only of those states reachable from the goal, and
apply Equation (1) over those situations:

(R(s) ∧ ¬goal(s)) =⇒ (∃a)[ext(P, s) ⊂ ext(P, res(a, s))].

However we must be careful because this essentially ex-
presses a tautology and may lack any structural content.

Another issue is the apparent lack of concurrency in situa-
tion calculus. The situation calculus can be extended to han-
dle multiple actions in parallel using the techniques in (Re-
iter 1996), while still staying within our framework. Then
we can define progress in terms of groups of parallel actions,
leading to even more efficient plans.

Another minor extension would handle domains with
more expressive ramifications. The current ADL formal-
izations of domains can handle some ramifications, either
by artifice of the language, or by constructs such as con-
ditional effects. (McIlraith 2000) provides successor state
axioms that include the effects of ramifications, if essen-
tially no circularities exist between the ramification fluents.
These successor state axioms are syntactically adaptable to
our paradigm.

The insightful reader will recognize that the strong mea-
sure of progress encodes a goal ordering. Our work is par-
allel to (Koehler & Hoffmann 2000), in that we both want
to steadily increase the truth of our set of goals. (Koehler
& Hoffmann 2000) derives a partition G1, ..., Gk over the
set of goals, and then achieves G1, and then from that state
achieves G1 ∪ G2, etc. In practice this works well. (Korf
1985)’s approach is similar. Korf learns efficient strategies
for solving problems such as Rubik’s Cube by searching for
macro-operators, a sequence of primitive operators, and an
ordering of the goal conjuncts g1, ..., gn such that every goal
conjunct gi has a macro mi which accomplishes gi, with-
out changing the truth of conjuncts g1, ..., gi−1 (although they
may change during the course of the macro).

However, in these above approaches, intermediate sub-
goals are hidden away in the intermediate plans/macros. On
the other hand, (Porteous, Sebastia, & Hoffmann 2001) ex-
tracts landmarks (subgoals true on every path to the goal)
which can be used to break down a planning task into many
smaller ones. (Porteous, Sebastia, & Hoffmann 2001) also
approximates orderings which are natural (necessary order-
ings of landmarks) and weakly reasonable (orderings on
subgoals which prevent unnecessary actions). Our P en-
codes similar information. For example, the typical final
position heuristic for BlocksWorld will avoid the Sussman
anomaly by noting that B is not really in its goal position
until C is, as depicted in the left side of Figure 1. In fact,
we can interpret each instance of P (x̄, s) as a fluent formula
encoding a subgoal and the degree it has been achieved. For
Logistics World, it encodes the package’s progress through
the various transports. For BlocksWorld it encodes whether
a block is in clear or in final position.

The strategy function a(s) briefly referred to has impor-
tant uses. (Bryson 2001) points out that a(s) is a teleo-
reactive (TR) program (Nilsson 1994). In the examples we
have encountered, proving that a predicate P is a strong mea-
sure of progress leads to construction of rules of the form:

¬goal(s) ∧ φi(s) =⇒ a(s) := a,

where φi is some fluent condition on the situation,∨
i
φi(s) ≡ >, and a is the action that increases ext(P, s).

Therefore from a(s) we can construct a universal TR pro-
gram that will achieve goal.

Finally, we have shown how to construct measures of
progress for some simple domains, and even how to combine
them (Theorem 6). Interesting future work would extend
this arsenal of measures, and create an algebra to combine
them. We should also look into refining the measures them-
selves – clearly an action that moves multiple objects into P
is better than one which moves only one, especially for do-
mains such as Logistics World or Gripper. We can construct
more elaborate versions of Equation (1) which will select
these better actions and avoid inefficient plans.

8 Acknowledgments
The author would like to thank John McCarthy and Tom
Costello for first pointing out this problem, and members
of the Formal Reasoning Group and the Logic Group for
intriguing observations, comments, and feedback. We also
thank the anonymous referees for their valuable suggestions
and directions for improvement. This research has been
partly supported by SNWSC contract N66001-00-C-8018.

References
Bacchus, F. 2000. AIPS 2000 Planning Competition Web-
page11.
Bonet, B., and Geffner, H. 2001. Heuristic Search Planner
2.012. AI Magazine.

11http://www.cs.toronto.edu/aips2000/
12http://www.ai.ldc.usb.ve/˜ hector/software/hsp2.ps

Bryson, J. 2001. Personal communication.

Doherty, P., and Kvarnström, J. 2001. TALplanner: A
Temporal Logic Based Planner13. AI Magazine.

Edelkamp, S., and Helmert, M. 2001. The Model Checking
Integrated Planning System (MIPS)14. AI Magazine 67–71.

Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and managing combinatorial optimisation sub-problems in
planning15. In IJCAI-01.

Gupta, N., and Nau, D. S. 1991. Complexity results for
blocks world planning. In AAAI-91.

Helmert, M. 2001. On the Complexity of Planning in
Transportation Domains16. In ECP’01, Lecture Notes in
Artificial Intelligence. New York: Springer-Verlag.

Hoffmann, J. 2001a. FF: The fast-forward planning sys-
tem. AI Magazine.

Hoffmann, J. 2001b. Local Search Topology in Planning
Benchmarks: An Empirical Analysis17. In IJCAI, 453–458.

Koehler, J., and Hoffmann, J. 2000. On Reasonable and
Forced Goal Orderings and their Use in an Agenda-Driven
Planning Algorithm18. Journal of Artificial Intelligence Re-
search 12:338–386.

Korf, R. 1985. Learning to Solve Problems by Searching
for Macro Operators. Ph.D. Dissertation, Carnegie Mellon
University.

Lin, F. 2002. Personal communication.

Long, D., and Fox, M. 2000. Automatic synthesis and use
of generic types in planning. In AIPS-00, 196–205.

McAllester, D. 1991. Some Observations on Cognitive
Judgements19. In AAAI-91, 910–915. Morgan Kaufmann
Publishers.

McCarthy, J. 1959. Programs with Common Sense20. In
Mechanisation of Thought Processes, Proceedings of the
Symposium of the National Physics Laboratory, 77–84.
London, U.K.: Her Majesty’s Stationery Office.

McIlraith, S. 2000. An axiomatic solution to the ramifica-
tion problem. Artificial Intelligence 116:87–121.

Nilsson, N. J. 1994. Teleo-Reactive Programs for Agent
Control21. Journal of Artificial Intelligence Research
1:139–158.

13ftp://ftp.ida.liu.se/pub/labs/kplab/people/patdo/www-
aimag.ps.gz

14http://citeseer.nj.nec.com/edelkamp00model.html
15http://www.dur.ac.uk/˜dcs0www/research/stanstuff/Papers/

sigpaper.ps
16http://www.informatik.uni-freiburg.de/˜helmert/publications/

ECP01 Complexity.pdf
17http://www.informatik.uni-freiburg.de/˜hoffmann/papers/

ijcai01.ps.gz
18http://www.informatik.uni-freiburg.de/˜hoffmann/papers/

jair00.ps.gz
19http://www.autoreason.com/aaai91a.ps
20http://www-formal.stanford.edu/jmc/mcc59.html
21http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume1/

nilsson94a.ps

Nilsson, N. 1998. Artificial Intelligence: A New Synthesis.
Morgan-Kaufman.
Parmar, A. 2002. A Logical Measure of Progress for Plan-
ning (Technical Report)22. Technical report, FRG.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On
the Extraction, Ordering and Usage of Landmarks in Plan-
ning23. In Proceedings of ECP’01.
Reiter, R. 1996. Natural Actions, Concurrency and Contin-
uous Time in the Situation Calculus24. In Aiello, L.; Doyle,
J.; and Shapiro, S., eds., Proceedings KR96, 2–13.
Sierra-Santibañez, J. 2001. Heuristic planning: a declara-
tive forward chaining approach. In Working Notes of Com-
mon Sense 2001, 228–234. Fifth Symposium on Logical
Formalizations of Commonsense Reasoning.
Veloso, M. 1992. Planning and Learning by Analogical
Reasoning. Ph.D. Dissertation, School of Computer Sci-
ence, Carnegie Mellon University.

22http://www-formal.Stanford.edu/aarati/techreports/aaai-2002-
tr.ps

23http://www.dur.ac.uk/˜dcs0www/research/stanstuff/Papers/
PorteousSebastiaHoffmann ecp 01.ps.gz

24http://www.cs.toronto.edu/cogrobo/natural.ps.Z

