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Abstract. This paper introduces some preliminary formalizations of the
approximate entities of [McCarthy, 2000]. Approximate objects, predi-
cates, and theories are considered necessary for human-level AI, and we
believe they enable very powerful modes of reasoning (which admittedly
are not always sound). Approximation is known as vagueness in philo-
sophical circles and is often deplored as a defective aspect of human
language which infects the precision of logic. Quite to the contrary, we
believe we can tame this monster by formalizing it within logic, and
then can “build solid intellectual structures on such swampy conceptual
foundations.” [McCarthy, 2000].

We first introduce various kinds of approximation, with motivating ex-
amples. Then we develop a simple ontology, with minimal philosophical
assumptions, in which to cast our formalization. We present our formal-
ization, and show how it captures some ideas of approximation.

1 Introduction

[McCarthy, 2000] introduces approximate objects, predicates, and theories as an
extension to AI. Informally, an entity is approximate if it can be further refined
by finding out more things about it, or by simply defining more. Reasoning
with approximate entities ignores unnecessary details, thereby simplifying and
accelerating reasoning in general, while remaining somewhat sound. Common
sense reasoning will require exactly this property. As in the Aristotle quote
of [McCarthy, 2000], “Our discussion will be adequate if it has as much clearness
as the subject matter admits of; for precision is not to be sought for alike in all
discussions”.

We also need to formalize approximation so that we know its boundaries;
one needs to know when an approximation fails, and how to move to the next
level of precision to reason correctly again. As an example, consider any of the
common sense problems displayed in [Morgenstern, 1998], such as cracking an
egg. Any theory explaining this process will be inherently approximate, as for-
malizing every eventuality is tedious and maybe impossible. In general we always
feel uncomfortable with any formalization, pointing out its inapplicability with
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respect to one eventuality or another.1 The point is, if we can understand how
a theory is approximate, then we can accept its failures rather than decry its
deficiencies, and simply move on to the next more precise theory when necessary.

Incidentally, many common sense theories of the world use the abnormality
predicate Ab and second-order minimization to be robust outside the bound-
aries of approximation. For example, ¬Ab(x) =⇒ (Bird(x) =⇒ Flies(x))
formalizes “All birds fly,” which, according to the Ab-minimization will infer
Bird(x) =⇒ Flies(x) when consistent to do so. Otherwise it will infer Ab(x),
as in the case of a penguin. Other than in action theories and inheritance hier-
archies, one never questions how to insert the Abs in a common sense theory, or
how to refine them when faced with new information. We hope to provide some
preliminary results that will help answer these two questions.

We believe our results may be applicable to other common-sense theories
which formalize aspects of the world. Consider any simple grammar describing
formation of English sentences (S ← NP V P, . . . ). It will correctly discriminate
a restricted class of sentences, but will have to be increasingly complex as it
approaches the full generality of English. Similar phenomena occur for other lin-
guistic theories. However humans, when asked to explain their machinations, give
a very simple illustration, adding elaborations only when necessary. This sug-
gests that the formalization of linguistic concepts is not some grand monolithic
(and highly complicated) theory but perhaps a series of approximate theories,
each expanding and elaborating upon previous theories. This structure would be
a lot more elaboration tolerant [McCarthy, 1998] as well.

A contrasting view [Dreyfus and Dreyfus, 1984] asserts that humans do not
use rules, but rather discriminate “thousands of special cases.” This work de-
scribes skill acquisition, the process by which a human masters a domain, as first
using a simple set of rules, but ending up with a discriminator of many subtle
cases based on experience. The expert does not consciously know these discrim-
inations, and when asked to give rules explaining his behavior, will revert to the
basic rules learned as a novice. This explains why an expert system, whose rules
are acquired through interviews with experts, are competent but do not perform
as well as the experts whose rules it is using. If [Dreyfus and Dreyfus, 1984] de-
scribes the true model of human skill acquisition, this would also explain why
discriminatory structures such as decision trees, and neural networks have been
so popular in AI, as they are models of real-world processes. If this is the case,
then at least our theory will formally explain how simple rules get elaborated
to a complex structure such as a neural network. If we can interpret the result-
ing structure as compiled rules, then perhaps our formalism could show how
to extract out the declarative versions of these compiled rules. These intriguing
avenues are beyond the scope of this preliminary paper.

1 This is probably the reason why much of AI has focused on toy examples. The
examples approximate the world in such a way that minimizes our guilt about how
simple the theory is.
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1.1 Philosophers’ Views on Approximation

We mentioned that what we call approximation, many philosophers in the lit-
erature denote as vagueness. In general a concept is vague if it has borderline
cases, and the boundaries of the indeterminacy are themselves blurred, as are the
boundaries of those, and so on [Sorensen, 1997]. Examples given in the literature
include baldness, the physical extent of Mount Everest, and the revival of a club
(due to Parfit, in [Broome, 1984]). The philosophers debate whether vagueness
exists in the world, or is just a linguistic artifact. Any discussion of vagueness in-
volves whether a sharp boundary line truly exists for vague concepts, illustrated
by the sorites paradox, that set of arguments which states:

1. 1 grain does not make a heap.
2. If n grains do not make a heap, then neither does n + 1 grains.
3. ∴ 106 grains do not make a heap.

Since this argument is false, there must be a point at which n grains are not
a heap, but adding 1 more does, which entails that some sharp boundary exists
between being a heap and not being a heap.

One of the proposed formalizations of vagueness is fuzzy logic, which instead
of ascribing true or false values to a sentence, ascribes a value between 0 and
1. Hence if x is only somewhat bald (a borderline case) we might ascribe to the
sentence “x is bald” the value 0.5. This value is referred to as the degree of truth
of the sentence. It seems however, that assigning a vague sentence an absolute
value is a bit paradoxical; fuzzy logic avoids this by also allowing higher types.
That is, instead of assigning a value, one can assign an interval of possible values.
Any interval [a, b] can transformed into a fuzzier interval [[a1, a2], [b1, b2]], where
both boundaries of the original interval are fuzzified into intervals themselves.
And these can be fuzzified further. If one does not like numbers, one can use any
lattice of elements. It turns out that the actual values of numbers are not very
important in practice anyway [Goguen, 1968].

Another proposal asserts that vagueness is linguistic, in that some concepts
(like baldness) are simply vaguely specified and can have various underlying
precise definitions. For example one could define baldness in various ways, as
having 0 hairs on one’s scalp, having at most 10 hairs, etc. Each one of these
possible definitions is a sharpening of the concept of baldness, and described with
a three-valued logic: a sentence containing a vague concept is true if it holds
under all sharpenings of the concept, false if it is false under all sharpenings
of the concept, and “indefinite” if it is true for only some of the sharpenings.
But then, unfortunately, the law of excluded middle (φ ∨ ¬φ) won’t hold for
borderline sentences φ.2

A third view notices that in the previous case, a meta-language is used to give
definite truth-conditions for the vaguer target language (although they them-
selves may be indefinite), and therefore definitely shows at what point truth
and falsity dissolve into indeterminacy. So for example in the sorites paradox, at

2 The argument may be found in [Tye, 2000].



4

some point whether n grains of sand make a heap will be a truth, and at n− 1
it will be indeterminate. The fact that there is a sharp line where indeterminacy
starts opposes the definition of vagueness. [Tye, 2000] proposes that even the
meta-language will need to be vague, as well as the meta-meta-language, etc.
This regress is known as higher-order vagueness. (Note that fuzzy logic could
model this regress using higher types.)

Finally the epistemic view [Williamson, 1994] espouses that definite bound-
aries for vague concepts exist, but we just cannot know them. Vagueness is an
ignorance which we can never overcome.

1.2 Related Work on Abstraction

[Giunchiglia and Walsh, 1992] is one of the first attempts to formalize abstrac-
tion, defined as the process of mapping the representation of a problem to
another one, so that the problem is easier to solve. It also shows how vari-
ous paradigms, such as ABSTRIPS, [Hobbs, 1985]’s theory of granularity, etc.
are instances of various kinds of abstractions. We share the same motivations
as [Giunchiglia and Walsh, 1992] in that we both care about the class of map-
pings that preserve desirable properties while throwing away unnecessary de-
tails. However we differ in approach in that we do not concentrate on syntactic
mappings between two axiomatic formal systems, which preserve the set of (non-
)theorems in some way. While this is important when we discuss approximate
theories, we care more about the fine structure of such theories, which requires
an examination of the nature of objects and predicates in the theory. We want to
know what are the intrinsic qualities about theories that make them so amenable
to certain forms of abstraction.

1.3 Propositional Approximate Theories

We repeat the treatment of propositional approximate theories given in
[McCarthy, 2000]. The ontology includes reality, modeled by a set of proposi-
tional variables r1, . . . , rn. There are so many observations that can be made,
denoted by o1, . . . , ok, which are each propositional functions of reality:

oi = Oi(r1, . . . , rn). (1)

The functions model the fact that much of reality is not directly observable.
The fact that n� k reflects the complexity of reality versus our observations.

q1, . . . , ql are a set of propositions about reality whose values we are interested
in learning. They are determined by reality:

qi = Qi(r1, . . . , rn). (2)

Our theory AT only approximates Qi(r1, . . . , rn) with Q′i(o1, . . . , ok), which
are only functions of our indirect observations about reality, and not reality itself
like the Qis.
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Lucky(r1, . . . , rn) is a predicate which when true, implies that our approxi-
mations to the qis is correct:

Lucky(r1, . . . , rn) =⇒
(∀i ≤ l)[Qi(r1, . . . , rn) = Q′i(O1(r1, . . . , rn), . . . ,Ok(r1, . . . , rn))].

(3)

The main points of this formalization is that:

1. Reality is not always directly observable, partly because of its complexity,
and partly because of the sheer enormity of details involved. The idea is
that facts about reality may not be epistemologically adequate,3 and the
observations oi are used to express what the subject can in fact sense.

2. The difference in cardinality between n, and k and l also reflects this notion
that reality is rich, and our observations are poor. Information is generally
lost in the transition from reality to observations. This cardinality of facts
is only one way to formalize this idea, and definitely not the most general.

3. Unfortunately, while the qi are functions of reality, we can only cobble to-
gether approximate functions based on our observations. Since our observa-
tions are usually lossy compared to reality, it is unlikely that the Qi and Q′i
will coincide. (Only if we are Lucky!)

1.4 The Ontology of Approximate Things

Here we further interpret the approximate objects, predicates, and theories in-
troduced in [McCarthy, 2000]. An approximate object is an object o in a logical
theory T , which either only partially captures the properties of some real object
in reality or is itself inherently partial. The approximateness is inherent to the
object, and not a matter of incompleteness of the theory (although to maintain
consistency a theory with approximate objects may have to abandon complete-
ness). Rather it is more a fact that the theory or its language may not be able
to properly capture an object’s properties. We can attempt a definition of ap-
proximate objects by first expounding three kinds of approximations of objects
that occur in common sense reasoning about the world:

1. (TYPE I) The first kind of approximate object is that which represents
an epistemologically richer4 object. For example, most Blocksworld theories
idealize a block so extremely as to ignore its physical characteristics, as
well as other relevant properties, such as its mass. Such an approximation
generally ignores irrelevant properties as well, such as the color of the block,
or where it was manufactured. It is clear that this sort of abstraction is useful

3 “[McCarthy and Hayes, 1969] defines an epistemologically adequate representation
of information as one that can express the information actually available to a subject
under given circumstances.” from [McCarthy, 1979]

4 [Howe, 1994] describes rich objects as those for which can be asserted properties,
which we cannot be completely described. Poor objects are exactly the opposite.
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in cases, to strain out many [irrelevant] facts, to simplify the ontology to the
task at hand. Approximations are most useful when an epistemologically
rich object is approximated by a poor one, to eliminate an entire order of
complexity.

2. (TYPE II) Another kind of approximation is the mental conception of ob-
jects for which there is no basis in reality. One example includes the con-
cept of being middle-aged. This is an abstraction constructed by humans,
which has no corresponding concept in reality: there are facts about being
“middle-aged” for which there is no inherent truth, and can only be decided
by defining more.
Another example is the concept of being red. In reality, there is no such con-
cept; there are only wavelengths, generally between 600 and 700 nanometers,
that give us humans the sensation of seeing red. Baldness, and what a heap
is, are other such approximations, and the paradoxes that arise from study-
ing them too closely arise from the fact that there is no real corresponding
concept in reality that would decide the matter.
This kind of approximation can be thought of as a human-created character-
ization of some phenomenon, which either simplifies reasoning or organizes
it nicely. These kinds of approximation can be used to characterize a wide
range of categories, without wasting too many words on a complete spec-
ification. Because they are not completely specified, the definitions will be
incoherent with respect to reality, often leading to paradoxes like that of
the heap. Since the definitions are defined by humans they are subject to
cultural as well as personal biases.

3. (TYPE III) The final type of approximate objects are those that arise in
counterfactual sentences [Costello and McCarthy, 1999]. Like Type II ob-
jects, they have no direct analogy in reality, by definition. They are only
defined by whatever properties that are ascribed to them in the counterfac-
tual. There is no truth of the matter for any other properties not mentioned
in (or derivable from) the counterfactual.
For example in “If another car had come over the hill when you passed that
car, there would have been a head-on collision,” the other car could have
been a Buick, a Mercedes, etc. There is no truth to the matter about what
make of car it was.

An approximate predicate is one whose extent is vague or ill-defined. There are
borderline cases whose membership is questionable, and therefore it is difficult
to come up with necessary and sufficient conditions. Some illustrative examples
include “the wants of the U.S.” [McCarthy, 2000] and religion [Alston, 1967]. We
define concepts as unary predicates, which can be approximate, such as natural
kinds (is an orange lemon still a lemon?). Fuzzy logic has had success in this
area, as it allows one to talk about the degree of membership of an object in a
set, which can represent borderline cases.

We hope to address the relation between our formalism and fuzzy logic in
later work. Our intuition is that a logically defined concept φ will be vague
because it is fundamentally ill-defined or incoherent, such as baldness or heaps.
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Fuzzy logic can handle the questionable cases by ascribing partial degrees of
truth. In first order logic, the only recourse is to either have an incomplete
theory, in the formal sense that for some object c, T 6|= bald(c) ∧ T 6|= ¬bald(c),
or to restrict the theory to some limited domain of discourse. (such as the set
of people who are either definitely bald or not.) A much better approach would
explicate how and when a concept is ill-defined, with respect to a more accurate
theory. This would then be superior to the fuzzy logic approach, since it would
explain why borderline cases are borderline, rather than sweeping the problem
under the rug by ascribing a partial degree of truth.

An approximate theory is a set of sentences which is an abbreviated descrip-
tion (in some sense) of some phenomenon. One example is when unnecessary
details about the world are ignored: reasoning about what will be served for
lunch on a flight is not required to plan a trip to Hawaii. Another is a kind of
idealization such as Blocksworld. We give a framework in which to talk about
theory approximation in §3.

The rest of this paper follows this outline: after some mathematical notation
is introduced (§2), we delve into a proposed ontology for first order theories
(§3), and then a formal definition of when one theory approximates another
(§4), with some examples. §5 formalizes epistemologically rich and poor objects,
which enables us to address the different types of approximate objects (§6).
Finally in §7 we consider when an approximate theory is coherent (correctly
predicts reality) and conclude in §8.

2 Preliminaries

We describe our notation and simplifications here. A, B, R, M, and M
′ are first-

order structures with non-empty universes. The universe of A is denoted |A|. M
denotes a class of first-order structures. T, TA, TB are all consistent first-order
theories. Any symbol of the form LX is a signature, or language.

We often interchange, in proofs and examples, a class of models M with
the theory T describing them. This should not be a source of confusion, as we
know there are well-defined functions ThL(M) which given a class of models in
language L returns the set of formulas true in all of them, and Mod(T ) which
returns the class of models of T .

Finally, if X is a set, then Xn is the set of n-tuples of X. A ∼= B means
that there is an isomorphism between the structures A and B. If two models are
isomorphic then they entail the same set of sentences.

3 Our Ontology

In this section we would like to construct a formalism which reflects the intu-
itions in §1.3, but is more general, and allows first-order statements rather than
propositions. To this end, we introduce the following ontology:

Let R be a first-order model of (one’s idea of) reality, using some language
LR. We let R be the collection or class of such models. On the other hand, our
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observations are constructed in the language LO. The language LO is determined
by the observations that can be made by our sensory organs. The standard set
of philosophical inquiries that we could make about the existence of the models
of reality R is moot, since each element R ∈ R is supposed to be the observer’s
perception or idealization of what reality is, which may be isomorphic to reality,
but not necessarily so. So for example, to a particle physicist, R would include
interactions between quarks. The R of an ancient Greek would explain weather
patterns in terms of Zeus’ temper and throwing lightning bolts.

While LO must be epistemologically adequate, LR should be metaphysically
adequate.5 We use a class of models instead of a sole model to represent different
perceptions of reality (wave versus particle interpretation of light), or incom-
pleteness in one’s perception of reality. If there is no such incompleteness, then
R can just be {R}, the singleton model.

The relation between LO and LR not only explains how objects are mapped
from one’s sensations to reality (in other words, how they are grounded), but
impart structure to any theory of reality based on our observations. LR describes
very rich phenomena, which explains why LO, which is meant to be a relatively
simple language, does not coincide with it. Note that instead of providing an
axiomatization of R, we provide the models themselves. This is because there
may not be a finite first-order axiomatization of R. We also prefer classes of
models to a theory, because assaying truth in reality appears to be more of a
determination of whether it holds in the world (whether R |= φ), rather than
some process of inference based on statements (whether R ` φ).

4 Theories Approximating Theories

The method of syntactic interpretation used by [Tarski et al., 1953] used to prove
[un]decidability of theories can be used to express whether one theory approx-
imates another. We copy the presentation in [Baudisch et al., 1985]: given two
classes of models A and B, respectively, of languages LA and LB, we define an
interpretation I : LA → LB which sends every predicate symbol P (x) of LA to
the formula φP (x) in LB, and the formula x = x to φ=(x), which is a formula of
LB. For now we assume that we only have relational symbols, and no functions
or constants in LA, as they can be represented in terms of relations and some
extra axioms. We explain the transformation for constant and function symbols
in §4.1.

This interpretation is extended to all formulas in LA using the following
inductive rules, where α and β are formulas of LA, x and y variables, and x a
tuple of variables:

1. (x = y)I = x = y

2. (P (x))I = φP (x)

5 [McCarthy, 1979] defines metaphysically adequate representations as those “that can
represent complete facts ignoring the subject’s ability to acquire the facts in given
circumstances.”
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3. (¬α)I = ¬(α)I

4. (α ∨ β)I = αI ∨ βI

5. (∃xα)I = (∃x)(φ=(x) ∧ αI)

From any model B ∈ B in the target language LB, we can define a structure
B

I in LA. This consists of two simple steps:

1. We simply set the universe of B
I to be the set of elements in B obeying

φ=(x):

|BI | = {x ∈ |B| | B |= φ=(x)}. (4)

2. Then we map the interpretation of each n-ary predicate P of LA:

PB
I

= {x ∈ |BI |
n
| B |= φP (x)}. (5)

For each predicate P ∈ LA, B
I “back-translates” a possible definition for

it by looking at φP in B. P ’s domain of application is controlled by the
predicate φ=, which picks out the part of B corresponding to objects in TA.

One can finally define a notion of interpretability:

Definition 1 (Interpretability). Let TA = ThLA(A) and TB = ThLB(B).
Then the theory TA is interpretable in TB, or TB interprets TA if there is an
interpretation function I : LA → LB such that:

1. for every structure B ∈ B there is a A ∈ A such that B
I ∼= A and,

2. for every structure A ∈ A there is a B ∈ B such that B
I ∼= A.

The two requirements for interpretability can be explained as (1): every model
of TB can be “back-translated” by I to be a model of TA, and (2): every model
of TA can be expanded to be a model of TB . A small theorem shows us how
strong the concept of interpretability is:

Theorem 1 (Interpretability of formulas). Assume TB interprets TA. Then
for any φ ∈ LA,

TA |= φ ⇐⇒ TB |= φI (6)

Proof. We include the lemma:

Lemma 1 ([Rabin, 1965]). Given any I : LA → LB, for any such φ ∈ LA,
and structure B of B,

B |= φI ⇐⇒ B
I |= φ. (7)

This lemma is proved by induction on the complexity of formulas.
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→: Assume TA |= φ. Let B |= TB, and try to show B |= φI . By the definition
of interpretability, there is an A

′ |= TA such that B
I ∼= A

′. Hence B
I |= TA,

which means that B
I |= φ. By the lemma B |= φI .

←: This time assume TB |= φI , let A |= TA, and show A |= φ. By inter-

pretability there is a B
′ |= TB such that A ∼= B

′I . B
′ |= φI and by the lemma

this means B
′I |= φ. And then from the isomorphism we can deduce A |= φ.

Hence if TB interprets TA, for any formula φ ∈ LA, we can use TB to find out
whether TA |= φ simply by checking if the interpreted formula φI holds in TB .
Intuitively, the function I interprets a simple theory TA in a more complicated
on TB ; TB contains the concepts necessary to express the concepts formalized in
TA.

We can now define the simplest form of theory approximation. We can say
that a theory TA in language LA approximates another theory TB in LB, written
TA <approx TB , if TA is interpretable in TB but not the other way around. The
idea is that TB is powerful enough to model TA, but TA cannot do the same for
TB , so it must be inherently more approximate (lost information).

This method of syntactic interpretations gives us a framework in which to
relate different theories with different languages through the interpretation func-
tion I. In order to make further distinctions in different kinds of approximation
we believe it will be necessary to study the fine structure of the function I. I may
be related to the simplifying assumptions mentioned in [Nayak and Levy, 1995].

Some facts to notice before we continue with some examples: Assume TB

interprets TA. If TB were complete, then it has only one model B, and (2)
means that all the models of TA are isomorphic to each other. Therefore TA is
categorical, and complete as well. If TB is complete, then any approximation to
it, according to this definition will have to be as well. On the other hand, if TA

were complete, then every model of TB will have to agree when back-translated
to LA.

4.1 The Treatment of Functions and Constants under
Approximation

This section illustrates how functions and constants in LA are transformed under
the function I, and where they appear in the models of TA versus models of TB .
Assume f is a unary function symbol of LA, used in TA. We can construct
a predicate Pf (x, y)⇐⇒ deff(x) = y which represents the graph of f , and
have a new language L′

A
= LA − {f} + {Pf}. Also we alter our theory T ′A ≡

TA|f(x)=y←Pf (x,y) ∧ (∀x)(∃y)(∀z)[Pf (x, z) ⇐⇒ y = z]. Then the translation
would be:

((∀x)(∃y)(∀z)[Pf (x, z) ⇐⇒ y = z])I =
(∀x ∈ φ=)(∃y ∈ φ=)(∀z ∈ φ=)[φPf

(x, z) ⇐⇒ y = z].
(8)

By Theorem 1, we know that TB |= (8), so that φPf
defines within TB a

function (call it g), which bears a relation to f through the transformation from
Pf and φPf

. Also, g is only defined on the extension of φ=.
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Since a constant is a 0-ary function, we can recycle the exposition above to
show that our graph of c(x) = c is Pc(y), and (8) will assert that Pc is the
predicate uniquely true of c. Then under I we will get another predicate φPc

which will be uniquely true of some other element d ∈ φ=. Intuitively then we
can consider I to also map objects and functions, where we denote d = cI , and
g = f I , which are related through the predicate transformations.

4.2 Theory Approximation Example: Generalizing Conditionals

Consider the theory TB ≡ Ψ ∧ (∀x)[P (x) ∧ α(x) =⇒ β(x)], where P is a
complicated predicate we would like to ignore, and Ψ some set of sentences
which does not mention P . Can we approximate it by the much simpler theory
TA = Ψ ∧ (∀x)[α(x) =⇒ β(x)]?

An obvious interpretation is if [P (x)]I = φ=(x) – that is, TA can be in-
terpreted in any model of TB provided we restrict the domain of discourse to
objects obeying P (x). There could be other interpretations that depend on the
structure of α, β and Ψ . The details are omitted here.

4.3 Theory Approximation Example: Blocksworld

Let TBW be the standard situation calculus theory of Blocksworld, using the
language LBW = (On(x, y, s),move(x, y, z), Table, A,B,C,Result) where
On(x, y, s) is the predicate stating block x is on block y, move(x, y, z) is the
action that moves x from y to the top of z, Table denotes a table of infinite
capacity, and A, B, and C are names for unique blocks. Result is the standard
successor function used in situation calculus. We assume TBW has successor
state axioms to completely specify the effects of every action; if an action is not
possible, we assume the world stays as it is. As we mentioned before, this theory
is so simple it does not even model the physical aspect of the blocks. Another
important approximation is that the table has infinite capacity. Finally, blocks
are either on, or off another block – there is no concept of them being partially
on a block, or being on two blocks at the same time.

Now consider a more realistic theory T ′BW of Blocksworld that models the
same blocks as in TBW , but as roughly parallelpieds, each with a center of
gravity. If the center of gravity of any tower of blocks is not supported from
below, this will generate torque about this axis and cause the blocks to fall to
the table. The language L′

BW
for such a descriptive theory includes symbols such

as: On(x, y, δ, s), where δ is the deviation of the center of gravity of x from y,
and move(x, y, z, δ), which is the action of moving x from y to z with δ deviation
of x’s center of gravity from z’s. Other than the constants Table, A, B, and C,
are functions cg(x) which gives the center of the gravity of the tower of blocks
above and including x, and normal arithmetic functions. Of course we need some
function surface(y, s), which returns some structure delineating the surface of
y (so that we can check if a tower of blocks is not supported and will fall).

We argue that TBW <approx T ′BW . To show this, we must show that T ′BW

interprets TBW , but not the other way around. Consider the interpretation I
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which interprets On(x, y, s) as the formula (∃δ)On(x, y, δ, s), and move(x, y, z) =
a as (∃δ)[a = move(x, y, z, δ) ∧ δ + cg(x) ∈ surface(z, s)]. We also set φ=(x)
to be true only for the blocks and the table, and for actions which place blocks
precisely over the center of gravity of other blocks. Each block A, B, C is matched
to the corresponding block in T ′BW , and the Table to the Table′. The idea behind
this interpretation is that models of TBW should correspond to “rounded-off”
versions of models of T ′BW .

Take any model M of TBW . We must show there is a corresponding M
′ of

T ′BW such that M
′I and M are isomorphic. We construct a model M

′ of T ′BW

by taking |M′| ⊇ |M|. Then for each 〈x, y, s〉 ∈ OnM, we put 〈x, y, 0, s〉 ∈ OnM
′

.
If a = moveM(x, y, z), then we set s = moveM

′

(x, y, z, 0). Clearly by definition

M = M
′I , since |φ=| = |M|.

For the second condition, it is enough to show that for any model M
′ of

T ′BW , M
′I |= TBW . φ= in this case will make sure |M′

I
| consists only of

blocks, the table, and precise moves. Then every “inexact” placement of blocks
On(x, y, δ, s) is rounded down to an exact one in M

′I , and every “inexact” move-
ment move(x, y, z, δ) becomes the exact move(x, y, z).

On the other hand, TBW does not interpret T ′BW . T ′BW is simply more expres-
sive. Formally, we can show this by considering the contrapositive of Theorem 1,
by taking an arbitrary I : L′

BW
→ LBW , and finding a φ which does not translate

over. The trick is to have φ formalize one of the differences between T ′BW and
TBW . For example, φ could be the statement that there exists a move where the
block falls to the table instead of reaching its destination (because it is placed
haphazardly on another block). T ′BW |= φ. But there is no way to translate this
to an expression in LBW which talks about the mysterious failure of an action,
without contradicting TBW .

4.4 Related Work

[Nayak and Levy, 1995] uses the same mathematical framework of syntactic in-
terpretation to characterize model increasing (MI) abstractions. MI abstractions
have the advantage over the syntactic ones in [Giunchiglia and Walsh, 1992] in
that they capture more of the “underlying justification that leads to the ab-
straction,” [Nayak and Levy, 1995]. Among other insights, the work shows how
the ABSTRIPS abstraction is an MI one. [Levy, 1994] formalizes irrelevance of
clauses with respect to queries on knowledge bases, as well as independence of
predicate arguments. [Nayak, 1994] combines abstractions within the theory of
contexts.

5 Rich and Poor Objects

A rich object is one that cannot be completely described, while a poor one can.
At first, one possible criterion for “description” may be identifying properties,
the set of properties which uniquely specify the object. This is opposed to all of
the properties which are true of the object. The number 0, even though there
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are infinitely many things to be said of it (0 < 1, 0 < 2, 0 < 3, 0 < 4, . . . .),
can be concisely identified as the unique number which has no predecessor, and
therefore is poor. On the other hand, the author may be uniquely identified, by
the poor description “the person writing this paper,” but the author is a rich
object, not a poor one.

Whether an object is rich or poor also depends on how it is formalized,
and what language is used to represent it. Situations, defined as a “snapshot of
the world,” are always treated as rich objects, while states, a finite collection
of variables’ values, are poor. A situation is rich because we can always find
another property that specifies the situation further, while once we decide upon
n variable values, a state is completely specified and very unmysterious. But
then if n were very large, and only a small part of the state’s variable values
were ever contemplated in a theory, it might as well be a rich object.

A possible definition of a rich object is one for which we can always extend
a theory of it to one which ascribes more untrivial properties. If oR is a rich
object in theory T , then we can imagine a more expressive theory T ′ where
T <approx T ′ in which oI

R appears. Any concept true of oR in T will have its
interpretation true of oI

R in T ′ by Theorem 1, and if the interpretation I is
injective, the distinct properties true of oR can only increase. But to guarantee
that we find out more interesting facts about o (and not some other object in T ′)
we will have to require something like that the tpT ′(o

I
R), the type of oI

R, defined
as the set of all 1-place formulas of T ′ that are true of oI

R, is not interpretable
in T .

A rich object oR in theory T0 then, would be one for we can continually
de-approximate theories about oR: there is an infinite sequence of theories such
that T0 <approx T1 <approx T2 <approx T3 . . . . Therefore an object oP is poor iff
every such sequence of theories bottoms out; we run out of things to say. One
object o is richer than another o′ if the longest sequence of o′ theories is less
than the longest one of o’s, starting from the simplest theory o = o or o′ = o′.
Back to the state example, a state with 107 variables is richer than one with 3,
but both are poor, and can’t compare to a situation.

We could define reality R as the class of models which bound every such
de-approximating sequence of theories: for every extension of a theory in LO,
the supremum of the sequence is a theory Tsup whose models are contained in
R.

6 Back to the Objects

In §3 we presented a mathematical definition for what it meant for one theory to
approximate another. Now we return to our task of formalizing each of the three
types of approximate objects within the theory. The formalization of a theory
approximation is needed for object approximation because as we noted earlier,
whether an object is approximate depends on its context, which refers to how it
is described and what language is used to describe it.
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In the description of these types of objects in §1.4, we compared each object
in some given theory (assumed to be in language LO) to its counterpart in reality
in LR. Below instead of talking about theories in LO and LR, we generalize the
discussion to theories TA and TB , where TA <approx TB . Thus the definitions
below will apply to any pair of theories.

6.1 Approximate Objects of Type I (Poorer Version of a Richer
Object)

Let c be an object constant, in theory TA, of type I. This means that there exists
a more precise theory TB with corresponding object cI , for which c is but a poor
approximation. This is represented by three facts:

1. TA <approx TB .
2. c has some corresponding object, cI in TB .
3. The description of c in TA is poorer than that of cI in TB .

To implement type I objects all we require is a de-approximation TB to the
current theory TA. The existence of cI will be guaranteed by the interpretation
function I, and since generally I is injective, will map different properties in
TA to different ones in TB , so that only more things can be said of cI in TB .
Naturally, we must add the constraints given in §5 about tpTB

(cI) not being
expressible in TA to make sure its description gets richer.

If TB = ThLR(R), almost every object o we imagine would be approximate,
since every theory T of o can be extended to ThLR(R) (it being a <approx upper
bound on all theories), and we can always imagine o’s richer analog in reality.

6.2 Approximate Objects of Type II (Objects with no Basis in
Reality)

If an object (or concept) c has no basis in reality, then of course an interpre-
tation I cannot be built, since c maps to some concept cI in R, which cannot
exist! The color red, “what the U.S. wants,” corners, baldness, and heaps are
all examples. Although these concepts have no immediate corresponding object
in R, they do seem to correspond to some composition of objects in reality. For
example, “red” is the sensation of viewing light of wavelengths from 600 to 700
nanometers. Similarly, “what the U.S. wants” is some complicated array of what
the President, U.S. diplomats, populace, etc. desire. A corner is some spatial
extent about a physical corner, while baldness is some collection of states of a
person with very little hair. The objects are approximate not only because they
correspond to a composition of objects, but the nature of composition is itself
vague.

For many of these examples, the approximation is an association of one object
in our base theory TA with a collection of objects in a more precise theory
TA <approx TB . For example the concept of a heap in TA is associated with some
set of actual heaps in TB . We need to have an altered interpretation function
that maps objects in TA to sets in TB . The epistemology of this is not worked
out yet and we hope to say much more later.
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6.3 Approximate Objects of Type III (Counterfactual Objects)

[McCarthy, 2000] introduces a function Whatif?(p, x), where p is a proposition,
and x some constant symbol. It can be used to consider counterfactual concepts
such as “What would have happened if another car had come over the hill when
you passed that Mercedes.” We can adapt this interesting function and consider
Whatif?(p, T ), where T is a first-order theory about the world and p still a
proposition, both in the same language L. Whatif?(p, T ) would be the resulting
theory if p were to hold.

Clearly, Whatif?(p, T ) |= p. Also, if T |= p, then Whatif?(p, T ) = T . If this
isn’t the case, Whatif?(p, T ) can be imagined as some minimal re-arrangement
of T that would be consistent with p. Whatif? could be implemented us-
ing the mechanisms in [Costello and McCarthy, 1999]. For non-trivial p and T ,
Whatif?(p, T ) could be infinitely refinable, which means that the function itself
would be rich, and any finite theory it returned would only be some approxima-
tion! To try to keep this from happening we assume that Whatif?(p, T ) returns
a theory also in language L. Hence the more expressive L is, the more interesting
Whatif?(p, T ) will be.

Whatif?(p, T ), being a counterfactual theory, will reference objects of type
III, which won’t exist in T , as in “the car that came over the hill.” The properties
of these type III objects should be limited to those ascribed to them by p, along
with whatever ramifications that may follow from Whatif?(p, T ).

7 When an Approximate Theory Works in Reality

Consider a robot stacking blocks. Suppose all the blocks are very close to being
idealized cubes, and the servo-mechanism in the robot arm is programmed so
carefully that the robot always stacks blocks precisely without error. Then to
the robot, the typical theory of Blocksworld will be a true description of reality,
even though we smarter humans know that it is a highly idealized description
of the world that won’t work in general.

But to the robot, this theory is correct. We would like to define under what
circumstances a simple approximate theory will work correctly in that complex
reality, because then we will know when we can get away with such approxima-
tions. This may also give us hints as how to parameterize a theory with Abs so
that it will be more robust outside the boundaries of approximation, and also
more elaboration tolerant.

We define this idea of when an approximate theory correctly predicts reality
as coherence. A theory T is coherent with respect to a more realistic theory T ′

and restrictions (same as simplifying assumptions) Φ if: I is an interpretation
from L to L′ and T ′ ∧ Φ |= T I , that is, every model of T ′ ∧ Φ will also model T

interpreted in T ′. If T <approx T ′ then coherence follows. Coherence is Lucky-
ness for first order theories.

There are already examples of coherent theories in this paper. In §4.2, if
we restrict our domain of discourse to be {x | P (x)} we can approximate Ψ ∧
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(∀x)[P (x) ∧ α(x) =⇒ β(x)], with Ψ ∧ (∀x)[α(x) =⇒ β(x)]. This is obvious,
but we can imagine more complicated theories for which we would need the
formalism to deduce when approximations would apply. If P (x) = ¬Ab(x) we
could apply the theory in reverse to find out how to add Abs to a theory to make
it more elaboration tolerant.

8 Conclusions

This paper is very preliminary and many of the definitions of approximation are
yet only approximations themselves. Much more work needs to be done in order
to make our theories precise. We need to further explore the structure of the
interpretation functions I and understand how they map concepts in one theory
to those in another, especially with regard to approximate objects of type II.
This will require an understanding of how to ground symbols. Perhaps we can
develop this understanding by considering the approximation of TA <approx TB

only within the context of how they relate to reality R.
Some other formal ideas from mathematics may be relevant to the proper-

ties of epistemologically rich and poor objects. For example forcing and generic
sets [Feferman, 1965] formalize the notion that a concept can be described in
some finite set of sentences, which could be a better criterion for whether an ob-
ject is poor. The theory sequences we use to determine richness/poorness might
be related to the sequence of finite sets of conditions Q0, Q1, . . . .

At least this theory explains why there are so many different AI theories of
action and change. Each formalism is just a different approximation to reality.
<approx is not a total order, so many different, incomparable approximations are
possible. Also, an initial review of [Fine, 1985] suggests that arbitrary objects are
a kind of approximate object that would be fruitful to study.
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