The Mutilated Checkerboard in Set Theory

John McCarthy
Computer Science Department
Stanford University
jmc@cs.stanford.edu
http://www-formal.stanford.edu/jmc/

April 27, 2001

An 8 by 8 checkerboard with two diagonally opposite squares removed cannot be covered by dominoes each of which covers two rectilinearly adjacent squares. We present a set theory description of the proposition and an informal proof that the covering is impossible. While no present system that I know of will accept either the formal description or the proof, I claim that both should be admitted in any heavy duty set theory. ${ }^{1}$

We have the definitions

$$
\begin{gather*}
\text { Board }=Z 8 \times Z 8, \tag{1}\\
\text { mutilated-board }=\text { Board }-\{(0,0),(7,7)\}, \tag{2}\\
\text { domino-on-board }(x) \equiv(x \subset \text { Board }) \wedge \operatorname{card}(x)=2 \\
\wedge(\forall x 1 x 2)(x=\{x 1, x 2\} \rightarrow \operatorname{adjacent}(x 1, x 2)) \tag{3}
\end{gather*}
$$

and

$$
\begin{align*}
& \operatorname{adjacent}(x 1, x 2) \equiv|c(x 1,1)-c(x 2,1)|=1 \\
& \wedge c(x 1,2)=c(x 2,2) \tag{4}\\
& \vee|c(x 1,2)-c(x 2,2)|=1 \wedge c(x 1,1)=c(x 2,1)
\end{align*}
$$

If we are willing to be slightly tricky, we can write more compactly

$$
\begin{equation*}
\operatorname{adjacent}(x 1, x 2) \equiv|c(x 1,1)-c(x 2,1)|+|c(x 1,2)-c(x 2,2)|=1 \tag{5}
\end{equation*}
$$

but then the proof might not be so obvious to the program.
Next we have.

[^0]\[

$$
\begin{align*}
& \text { partial-covering }(z) \\
& \equiv(\forall x)(x \in z \rightarrow \text { domino-on-board }(x)) \tag{6}\\
& \wedge(\forall x y)(x \in z \wedge y \in z \rightarrow x=y \vee x \cap y=\{ \})
\end{align*}
$$
\]

Theorem:

$$
\begin{equation*}
\neg(\exists z)(\text { partial-covering }(z) \wedge \bigcup z=\text { mutilated-board }) \tag{7}
\end{equation*}
$$

Proof:

We define

$$
\begin{align*}
& x \in \operatorname{Board} \rightarrow \operatorname{color}(x)=\operatorname{rem}(c(x, 1)+c(x, 2), 2) \tag{8}\\
& \text { domino-on-board }(x) \rightarrow \tag{9}\\
& (\exists u v)(u \in x \wedge v \in x \wedge \operatorname{color}(u)=0 \wedge \operatorname{color}(v)=1) \text {, } \\
& \quad \operatorname{partial-covering}(z) \rightarrow \\
& \quad \operatorname{card}(\{u \in \bigcup z \mid \operatorname{color}(u)=0\}) \tag{10}\\
& \quad=\operatorname{card}(\{u \in \bigcup z \mid \operatorname{color}(u)=1\}) \\
& \operatorname{card}(\{u \in \text { mutilated-board } \mid \operatorname{color}(u)=0\}) \tag{11}\\
& \quad \neq \operatorname{card}(\{u \in \text { mutilated-board } \mid \operatorname{color}(u)=1\}),
\end{align*}
$$

and finally

$$
\begin{equation*}
\neg(\exists z)(\text { partial-covering }(z) \wedge \text { mutilated-board }=\bigcup z) \tag{12}
\end{equation*}
$$

Q.E.D.

[^0]: ${ }^{1}$ The Mizar proof checker accepts the definitions essentially as they are, but the first proof in Mizar is 400 lines.

