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Abstract

It is not surprising that reaching
human-level AI has proved to be dif-
ficult and progress has been slow—
though there has been important
progress. The slowness and the de-
mand to exploit what has been dis-
covered has led many to mistakenly
redefine AI, sometimes in ways that
preclude human-level AI—by rele-
gating to humans parts of the task
that human-level computer programs
would have to do. In the terminology
of this paper, it amounts to settling
for a bounded informatic situation in-
stead of the more general common

sense informatic situation.

Overcoming the “brittleness” of
present AI systems and reaching
human-level AI requires programs
that deal with the common sense

informatic situation—in which the
phenomena to be taken into account
in achieving a goal are not fixed in
advance.

We discuss reaching human-level AI,
emphasizing logical AI and especially
emphasizing representation problems
of information and of reasoning.
Ideas for reasoning in the com-
mon sense informatic situation in-

clude nonmonotonic reasoning, ap-
proximate concepts, formalized con-
texts and introspection.

1 What is Human-Level AI?

The first scientific discussion of human level
machine intelligence was apparently by Alan
Turing in the lecture [Turing, 1947]. The no-
tion was amplified as a goal in [Turing, 1950],
but at least the latter paper did not say what
would have to be done to achieve the goal.

Allen Newell and Herbert Simon in 1954 were
the first people to make a start on program-
ming computers for general intelligence. They
were over-optimistic, because their idea of
what has to be done to achieve human-level in-
telligence was inadequate. The General Prob-

lem Solver (GPS) took general problem solv-
ing to be the task of transforming one expres-
sion into another using an allowed set of trans-
formations.

Many tasks that humans can do, humans can-
not yet make computers do. There are two ap-
proaches to human-level AI, but each presents
difficulties. It isn’t a question of deciding be-
tween them, because each should eventually
succeed; it is more a race.

1. If we understood enough about how the
human intellect works, we could simulate



it. However, we don’t have have suffi-
cient ability to observe ourselves or others
to understand directly how our intellects
work. Understanding the human brain
well enough to imitate its function there-
fore requires theoretical and experimental
success in psychology and neurophysiol-
ogy. 1 See [Newell and Simon, 1972] for
the beginning of the information process-
ing approach to psychology.

2. To the extent that we understand the
problems achieving goals in the world
presents to intelligence we can write intel-
ligent programs. That’s what this article
is about.

What problems does the world present to in-
telligence? More narrowly, we consider the
problems it would present to a human scale
robot faced with the problems humans might
be inclined to relegate to sufficiently intelli-
gent robots. The physical world of a robot
contains middle sized objects about which its
sensory apparatus can obtain only partial in-
formation quite inadequate to fully determne
the effects of its future actions. Its mental
world includes its interactions with people and
also meta-information about the information
it has or can obtain.

Our approach is based on what we call the
common sense informatic situation. In order
to explain the common sense informatic situ-
ation, we contrast it with the bounded infor-

matic situation that characterizes both formal
scientific theories and almost all (maybe all)
experimental work in AI done so far.2

1Recent work with positron emission tomography has
identified areas of the brain that consume more glucose
when a person is doing mental arithmetic. This knowledge
will help build AI systems only when it becomes possible
to observe what is going on in these areas during mental
arithmetic.

2The textbook [David Poole and Goebel, 1998] puts it
this way. “To get human-level computational intelligence
it must be the agent itself that decides how to divide up
the world, and which relationships to reason about.

A formal theory in the physical sciences deals
with a bounded informatic situation. Scientists
decide informally in advance what phenomena
to take into account. For example, much ce-
lestial mechanics is done within the Newtonian
gravitational theory and does not take into ac-
count possible additional effects such as out-
gassing from a comet or electromagnetic forces
exerted by the solar wind. If more phenom-
ena are to be considered, a person must make
a new theory. Probabilistic and fuzzy uncer-
tainties can still fit into a bounded informatic
system; it is only necessary that the set of pos-
sibilities (sample space) be bounded.

Most AI formalisms also work only in a
bounded informatic situation. What phenom-
ena to take into account is decided by a person
before the formal theory is constructed. With
such restrictions, much of the reasoning can be
monotonic, but such systems cannot reach hu-
man level ability. For that, the machine will
have to decide for itself what information is
relevant. When a bounded informatic system

is appropriate, the system must construct or
choose a limited context containing a suitable
theory whose predicates and functions connect
to the machine’s inputs and outputs in an ap-
propriate way. The logical tool for this is non-

monotonic reasoning.

2 The Common Sense Informatic

Situation

Contention: The key to reaching

human-level AI is making systems that

operate successfully in the common

sense informatic situation.

In general a thinking human is in what we call
the common sense informatic situation first
discussed in3 [McCarthy, 1989]. It is more
general than any bounded informatic situation.
The known facts are incomplete, and there is
no a priori limitation on what facts are rel-

3http://www-formal.stanford.edu/jmc/ailogic.html



evant. It may not even be decided in ad-
vance what phenomena are to be taken into
account. The consequences of actions cannot
be fully determined. The common sense in-

formatic situation necessitates the use of ap-

proximate concepts that cannot be fully de-
fined and the use of approximate theories in-
volving them. It also requires nonmonotonic

reasoning in reaching conclusions.

The common sense informatic situation also
includes some knowledge about the system’s
mental state.

A nice example of the common sense infor-
matic situation is illustrated by an article in
the American Journal of Physics some years
ago. It discussed grading answers to a physics
problem. The exam problem is to find the
height of a building using a barometer. The
intended solution is to measure the air pres-
sure at the top and bottom of the building
and multiply the difference by the ratio of the
density of mercury to the density of air.

However, other answers may be offered. (1)
drop the barometer from the top of the build-
ing and measure the time before it hits the
ground. (2) Measure the height and length of
the shadow of the barometer and measure the
length of the shadow of the building. (3) Rap-
pel down the building using the barometer as
a measuring rod. (4) Lower the barometer on
a string till it reaches the ground and measure
the string. (5) Offer the barometer to the jani-
tor of the building in exchange for information
about the height. (6) Ignore the barometer,
count the stories of the building and multiply
by ten feet.

Clearly it is not possible to bound in advance
the common sense knowledge of the world
that may be relevant to grading the prob-
lem. Grading some of the solutions requires
knowledge of the formalisms of physics and the
physical facts about the earth, e.g. the law
of falling bodies or the variation of air pres-

sure with altitude. However, in every case,
the physics knowledge is embedded in com-
mon sense knowledge. Thus before one can
use Galileo’s law of falling bodies s = 1

2
gt2, one

needs common sense information about build-
ings, their shapes and their roofs.

Bounded informatic situations are obtained by
nonmonotonically inferring that only the phe-
nomena that somehow appear to be relevant
are relevant. In the barometer example, the
student was expected to infer that the barom-
eter was only to be used in the conventional
way for measuring air pressure. For example,
a reasoning system might do this by apply-
ing circumscription to a predicate relevant in a
formalism containing also metalinguistic infor-
mation, e.g. that this was a problem assigned
in a physics course. Formalizing relevance in
a useful way promises to be difficult.

Common sense facts and common sense rea-
soning are necessarily imprecise. The impreci-
sion necessitated by the common sense infor-
matic situation applies to computer programs
as well as to people.

Some kinds of imprecision can be represented
numerically and have been explored with the
aid of Bayesian networks, fuzzy logic and simi-
lar formalisms. This is in addition to the study
of approximation in numerical analysis and the
physical sciences.

3 The Use of Mathematical Logic

What about mathematical logical languages?

Mathematical logic was devised to formal-
ize precise facts and correct reasoning. Its
founders, Leibniz, Boole and Frege, hoped to
use it for common sense facts and reasoning,
not realizing that the imprecision of concepts
used in common sense language was often a
necessary feature and not always a bug. The
biggest success of mathematical logic was in
formalizing mathematical theories. Since the



common sense informatic situation requires
using imprecise facts and imprecise reason-
ing, the use of mathematical logic for common
sense has had limited success. This has caused
many people to give up. Gradually, extended
logical languages and even extended forms of
mathematical logic are being invented and de-
veloped.

It is necessary to distinguish between mathe-
matical logic and particular mathematical log-
ical languages. Particular logical languages
are determined by a particular choice of con-
cepts and the predicate and function symbols
to represent them. Failure to make the dis-
tinction has often led to error. When a par-
ticular logical language has been shown inad-
equate for some purpose, some people have
concluded that logic is inadequate. Different
concepts and different predicate and function
symbols might still succeed. In the words of
the drive-in movie critic of Grapevine, Texas,
“I’m surprised I have to explain this stuff.”

The pessimists about logic or some particular
set of predicates might try to prove a theorem
about its inadequacies for expressing common
sense.4

Since it seems clear that humans don’t use
logic as a basic internal representation formal-
ism, maybe something else will work better
for AI. Researchers have been trying to find
this something else since the 1950s but still
haven’t succeeded in getting anything that is
ready to be applied to the common sense in-
formatic situation. Maybe they will eventually
succeed. However, I think the problems listed
in the later sections of this article will apply
to any approach to human-level AI.

Mathematical logic has been concerned with
how people ought to think rather than how
people do think. We who use logic as a basic

4Gödel’s theorem is not relevant to this, because the
question is not one of decideability or of characterizing
truth.

AI formalism make programs reason logically.
However, we have to extend logic and extend
the programs that use it in various ways.

One important extension was the development
of modal logic starting in the 1920s and using
it to treat modalities like knowledge, belief and
obligation. Modalities can be treated either
by using modal logic or by reifying concepts
and sentences within the standard logic. My
opinion is that reification in standard logic is
more powerful and will work better.

A second extension was the formalization of
nonmonotonic reasoning beginning in the late
1970s—with circumscription and default logic
and their variants as the major proposals.
Nonmonotonic logic has been studied both as
pure mathematics and in application to AI
problems, most prominently to the formaliza-
tion of action and causality. Several variants
of the major formalisms have been devised.

Success so far has been moderate, and it isn’t
clear whether greater success can be obtained
by changing the the concepts and their rep-
resentation by predicate and function symbols
or by varying the nonmonotonic formalism. 5

We need to distinguish the actual use of logic
from what Allen Newell, [Newell, 1981] and
[Newell, 1993], calls the logic level and which
was also proposed in [McCarthy, 1979]6.

4 Approximate Concepts and

Approximate Theories

Other kinds of imprecision are more funda-
mental for intelligence than numerical impre-
cision. Many phenomena in the world are ap-
propriately described in terms of approximate

concepts. Although the concepts are impre-
cise, many statements using them have precise
truth values. We offer two examples: the con-

5One referee for KR96 foolishly and arrogantly pro-
posed rejecting a paper on the grounds that the inadequacy
of circumscription for representing action was known.

6http://www-formal.stanford.edu/jmc/ascribing.html



cept of Mount Everest and the concept of the
welfare of a chicken. The exact pieces of rock
and ice that constitute Mount Everest are un-
clear. For many rocks, there is no truth of the

matter as to whether it is part of Mount Ever-
est. Nevertheless, it is true without qualifica-
tion that Edmund Hillary and Tenzing Norgay
climbed Mount Everest in 1953 and that John
McCarthy never set foot on it.

The point of this example is that it is possi-
ble and even common to have a solid knowl-
edge structure from which solid conclusions
can be inferred based on a foundation built on
the quicksand of approximate concepts with-
out definite extensions.

As for the chicken, it is clear that feeding it
helps it and wringing its neck harms it, but
it is unclear what its welfare consists of over
the course of the decade from the time of its
hatching. Is it better off leading a life of poul-
try luxury and eventually being slaughtered
or would it be better off escaping the chicken
yard and taking its chances on starvation and
foxes? There is no truth of the matter to be
determined by careful investigation of chick-
ens. When a concept is inherently ap-

proximate, it is a waste of time to try to

give it a precise definition. Indeed differ-
ent efforts to define such a concept precisely
will lead to different results—if any.

Most human common sense knowledge in-
volves approximate concepts, and reaching
human-level AI requires a satisfactory way
of representing information involving approxi-
mate concepts.

5 Nonmonotonic Reasoning

Common sense reasoning is also imprecise in
that it draws conclusions that might not be
made if there were more information. Thus
common sense reasoning is nonmonotonic. I
will not go into the details of any of the pro-

posals for handling nonmonotonic reasoning.

In particular, getting from the common sense
informatic situation to a bounded informatic
situation needs nonmonotonic reasoning.

6 Elaboration Tolerance

Human abilities in the common sense infor-
matic situation also include what may be
called elaboration tolerance—the ability to
elaborate a statement of some facts without
having to start all over. Thus when we begin
to think about a problem, e.g. determining
the height of a building, we form a bounded
context and try to solve the problem within it.
However, at any time more facts can be added,
e.g. about the precision with which the time
for the barometer to fall can be estimated us-
ing a stop watch and also the possibilities of
acquiring a stop watch.

Elaboration Tolerance7 discusses about 25
elaborations of the Missionaries and Cannibals
problem.

What I have so far said so far about ap-
proximate concepts, nonmonotonic reasoning
and elaboration tolerance is independent of
whether mathematical logic, human language
or some other formalism is used.

In my opinion, the best AI results so far have
been obtained using and extending mathemat-
ical logic.

7 Formalization of Context

A third extension of mathematical logic in-
volves formalizing the notion of context8

[McCarthy, 1993]. Notice that when logical
theories are used in human communication
and study, the theory is used in a context
which people can discuss from the outside. If
computers are to have this facility and are to

7http://www-formal.stanford.edu/jmc/elaboration.html
8http://www-formal.stanford.edu/jmc/context.html



work within logic, then the “outer” logical lan-
guage needs names for contexts and sentences
giving their relations and a way of entering a
context. Clearly human-level AI requires rea-
soning about context.

Human-level AI also requires the ability to
transcend the outermost context the system
has used so far. Besides in [McCarthy, 1993],
this is also discussed in Making Robots

Conscious of their Mental States9

[McCarthy, 1996].

Further work includes [Buvač, 1996] and
[Buvač et al., 1995].

8 Reasoning about

Events—Especially Actions

Reasoning about actions has been a major AI
activity, but this paper will not discuss my or
other people’s current approaches, concentrat-
ing instead on the long range problem of reach-
ing human level capability. We regard actions
as particular kinds of events and therefore pro-
pose subsuming reasoning about actions under
the heading of reasoning about events.

Most reasoning about events has concerned
determining the effects of an explicitly given
sequence of actions by a single actor. Within
this framework various problems have been
studied.

• The frame problem concerns not having
to state what does not change when an
event occurs.

• The qualification problem concerns not
having to state all the preconditions of an
action or other event. The point is both
to limit the set of preconditions and also
to jump to the conclusion that unstated
others will be fulfilled unless there is evi-
dence to the contrary. For example, wear-
ing clothes is a precondition for airline

9http://www-formal.stanford.edu/jmc/consciousness.html

travel, but the travel agent will not tell
his customer to be sure and wear clothes.

• The ramification problem concerns how to
treat side-effects of events other than the
principal effect mentioned in the event de-
scription.

Each of these involves elaboration tolerance,
e.g. adding descriptions of the effects of
additional events without having to change
the descriptions of the events already de-
scribed. When I wrote about applications of

circumscription to formalizing common

sense10 [McCarthy, 1986], I hoped that a sim-

ple abnormality theory would suffice for all of
them. That didn’t work out when I tried it,
but I still think a common nonmonotonic rea-
soning mechanism will work. Tom Costello’s
draft “The Expressive Power of Circumscript-

tion”11 argues that simple abnormality theo-
ries have the same expressive power as more
elaborate nonmonotonic formalisms that have
been proposed.

Human level intelligence requires reasoning
about strategies of action, i.e. action pro-
grams. It also requires considering multiple
actors and also concurrent events and contin-
uous events. Clearly we have a long way to
go.

Some of these points are discussed in a draft
on narrative12 [McCarthy, 1995].

9 Introspection

People have a limited ability to observe their
own mental processes. For many intellectual
tasks introspection is irrelevant. However, it
is at least relevant for evaluating how one is
using one’s own thinking time. Human-level
AI will require introspective ability.

10http://www-formal.stanford.edu/jmc/applications.html
11http://www-formal.stanford.edu/tjc/expressive.html
12http://www-formal.stanford.edu/jmc/narrative.html



That robots also need introspection13

is argued and how to do it is discussed in
[McCarthy, 1996].

10 Heuristics

The largest qualitative gap between human
performance and computer performance is in
the area of heuristics, even though the gap is
disguised in many applications by the millions-
fold speed advantage of computers. The gen-
eral purpose theorem proving programs run
very slowly, and the special purpose programs
are very specialized in their heuristics.

I think the problem lies in our present in-
ability to give programs domain and prob-
lem dependent heuristic advice. In my Ad-
vice Taker paper14 [McCarthy, 1959] I adver-
tised that the Advice Taker would express its
heuristics declaratively. Maybe that will work,
but neither I nor anyone else has been able to
get a start on the problem in the ensuing al-
most 40 years. Josefina Sierra-Santibanez re-
ports on some progress in a forthcoming arti-
cle.

Another possibility is to express the advice in
a procedure modification language, i.e. to ex-
tend elaboration tolerance to programs. Of
course, every kind of modularity, e.g. object
orientation, gives some elaboration tolerance,
but these devices haven’t been good enough.

Ideally, a general purpose reasoning system
would be able to accept advice permitting it
to run at a fixed ratio speed of speeds to a
special purpose program, e.g. at 1/20 th the
speed.

11 Summary

Conclusion: Between us and human-level in-
telligence lie many problems. They can be

13http://www-formal.stanford.edu/jmc/consciousness.html
14http://www-formal.stanford.edu/jmc/mcc59.html

summarized as that of succeeding in the com-

mon sense informatic situation.

The problems include:

common sense knowledge of the world

Many important aspects of what this
knowledge is in and how it can be
represented are still unsolved questions.
This is particularly true of knowledge of
the effects of actions and other events.

epistemologically adequate languages

These are languages for expressing
what a person or robot can ac-

tually learn about the world15

[McCarthy and Hayes, 1969].

elaboration tolerance What a person
knows can be elaborated without starting
all over.

nonmonotonic reasoning Perhaps new sys-
tems are needed.

contexts as objects This subject is just be-
ginning. See the references of section 7.

introspection AI systems will need to exam-
ine their own internal states.

action The present puzzles of formalizing ac-
tion should admit a uniform solution.

I doubt that a human-level intelligent program
will have structures corresponding to all these
entities and to the others that might have been
listed. A generally intelligent logical program
probably needs only its monotonic and non-
monotonic reasoning mechanisms plus mecha-
nisms for entering and leaving contexts. The
rest are handled by particular functions and
predicates.

15http://www-formal.stanford.edu/jmc/mcchay69.html



12 Remarks and Acknowledgements

1. To what extent will all these problems
have to be faced explicitly by people
working with neural nets and connection-
ist systems? The systems I know about
are too primitive for the problems even to
arise. However, more ambitious systems
will inhabit the common sense informatic
situation. They will have to be elabora-
tion tolerant and will require some kind
of mental model of the consequences of
actions.

2.

3. I got useful suggestions from Eyal Amir,
Saša Buvač and Tom Costello.

4. Some additional relevant papers are in my
book [McCarthy, 1990] and on my Web
site16.

5. My understanding that I should prepare a
printable version of this invited talk came
rather late. I expect that both the spoken
version and the 1996 November Web ver-
sion will have better explanations of the
important concepts.

6. This work was partly supported by ARPA
(ONR) grant N00014-94-1-0775.

13 Conclusion

Many will find dismayingly large the list of
tasks that must be accomplished in order to
to reach human-level logical intelligence. Per-
haps fewer but more powerful ideas would sim-
plify the list. Others will claim that a sys-
tem that evolves intelligence as life does will
be more straightforward to build. Maybe, but
the advocates of that approach have been at it
as long as we have and still aren’t even close.

So it’s a race.
16http://www-formal.stanford.edu/jmc/

It will be much more scientifically satisfying to
understand human level artificial intelligence
logically than just achieve it by a computer-
ized evolutionary process that produced an in-
telligent but incomprehensible result. In fact,
the logical approach would be worth pursuing
even if the intellectually lazy evolutionary ap-
proach won the race.
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