
CORRECTNESS OF A COMPILER FOR

ARITHMETIC EXPRESSIONS
∗

JOHN McCARTHY and JAMES PAINTER

1967

1 Introduction

This paper contains a proof of the correctness of a simple compiling algorithm
for compiling arithmetic expressions into machine language.

The definition of correctness, the formalism used to express the description
of source language, object language and compiler, and the methods of proof are
all intended to serve as prototypes for the more complicated task of proving the
correctness of usable compilers. The ultimate goal, as outlined in references
[1], [2], [3] and [4] is to make it possible to use a computer to check proofs that
compilers are correct.

The concepts of abstract syntax, state vector, the use of an interpreter
for defining the semantics of a programming language, and the definition of
correctness of a compiler are all the same as in [3]. The present paper, however,
is the first in which the correctness of a compiler is proved.

The expressions dealt with in this paper are formed from constants and
variables. The only operation allowed is a binary + although no change in
method would be required to include any other binary operations. An example
of an expression that can be compiled is

(x + 3) + (x + (y + 2))
∗This is a reprint with minor changes of ”Correctness of a Compiler for Arithmetic Ex-

pressions” by John McCarthy and James Painter which was published in MATHEMATICAL

ASPECTS OF COMPUTER SCIENCE 1, which was Volume 19 of Proceedings of Symposia

in Applied Mathematics and published by the American Mathematical Society in 1967

1



although, because we use abstract syntax, no commitment to a particular
notation is made.

The computer language into which these expressions are compiled is a
single address computer with an accumulator, called ac, and four instructions:
li (load immediate), load, sto (store) and add. Note that there are no jump
instructions. Needless to say, this is a severe restriction on the generality of
our results which we shall overcome in future work.

The compiler produces code that computes the value of the expression
being compiled and leaves this value in the accumulator. The above expression
is compiled into code which in assembly language might look as follows:

load x
sto t
li 3
add t
sto t
load x
sto t + 1
load y
sto t + 2
li 2
add t + 2
add t + 1
add t

Again because we are using abstract syntax there is no commitment to a
precise form for the object code.

2 The source language

The abstract analytic syntax of the source expressions is given by the table:

predicate associated functions
isconst(e)
isvar(e)
issum(e) s1(e) s2(e)

which asserts that the expressions comprise constants, variables and binary
sums, that the predicates isconst, isvar, and issum enable one to classify
each expression and that each sum e has summands s1(e) and s2(e).

2



The semantics is given by the formula

(2.1) value(e, ξ) = if isconst(e) then val(e) else if isvar(e) then c(e, ξ)
else if issum(e) then value(s1(e), ξ) + value(s2(e), ξ)

where val(e) gives the numerical value of an expression e representing a con-
stant, c(e, ξ) gives the value of the variable e in the state vector ξ and + is some
binary operation. (It is natural to regard + as an operation that resembles
addition of real numbers, but our results do not depend on this).

For our present purposes we do not have to give a synthetic syntax for
the source language expressions since both the interpreter and the compiler
use only the analytic syntax. However, we shall need the following induction
principle for expressions:

Suppose Φ is a predicate applicable to expressions, and suppose that for
all expressions e we have

isconst(e) ⊃ Φ(e) and
isvar(e) ⊃ Φ(e) and
issum(e) ⊃ Φ(s1(e)) ∧ Φ(s2(e)) ⊃ Φ(e).

Then we may conclude that Φ(e) is true for all expressions e.

3 The object language.

We must give both the analytic and synthetic syntaxes for the object language
because the interpreter defining its semantics uses the analytic syntax and the
compiler uses the synthetic syntax. We may write the analytic and synthetic
syntaxes for instructions in the following table.

operation predicate analytic operation synthetic operation
li α isli(s) arg(s) mkli(α)
load x isload(s) adr(s) mkload(x)
sto x issto(s) adr(s) mksto(x)
add x isadd(s) adr(s) mkadd(x)

A program is a list of instructions and null(p) asserts that p is the null list.
If the program p is not null then first(p) gives the first instruction and rest(p)

3



gives the list of remaining instructions. We shall use the operation p1 ∗ p2 to
denote the program obtained by appending p2 onto the end of p1. Since we
have only one level of list we can identify a single instruction with a program
that has just one instruction.

The synthetic and analytic syntaxes of instructions are related by the fol-
lowing.

isli(mkli(α))
α = arg(mkli(α))

(3.1) isli(s) ⊃ s = mkli(arg(s))
null(rest(mkli(α)))
isli(s) ⊃ first(s) = s

isload(mkload(x))
x = adr(mkload(x))

(3.2) isload(x) ⊃ x = mkload(adr(x))
null(rest(mkload(x)))
isload(s) ⊃ first(s) = s

issto(mksto(x))
x = adr(mksto(x))

(3.3) issto(x) ⊃ x = mksto(adr(x))
null(rest(mksto(x)))
issto(s) ⊃ first(s) = s

isadd(mkadd(x))
x = adr(mkadd(x))

(3.4) isadd(x) ⊃ x = mkadd(adr(x))
null(rest(mkadd(x)))
isadd(x) ⊃ first(s) = s

(3.5) ¬ null(p) ⊃ p = first(p) ∗ rest(p),
(3.6) ¬null(p1) ∧ null(rest(p1)) ⊃ p1 = first(p1 ∗ p2)

(3.7) null(p1 ∗ p2) ≡ null(p1) ∧ null(p2).

The ∗ operation is associative. (The somewhat awkward form of these
relations comes from having a general concatenation operation rather than
just an operation that prefixes a single instruction onto a program.)

4



A state vector for a machine gives, for each register in the machine, its
contents. We include the accumulator denoted by ac as a register. There are
two functions of state vectors as introduced in [3], namely

1. c(x, η) denotes the value of the contents of register x in machine state
η.

2. a(x, α, η) denotes the state vector that is obtained from the state vec-
tor η by changing the contents of register x to α leaving the other registers
unaffected.

These functions satisfy the following relations:

(3.8) c(x, a(y, α, η)) = if x = y then α else c(x, η),

(3.9) a(x, α, a(y, β, η)) = if x = y then a(x, α, η) else a(y, β, a(x, α, η)),

(3.10) a(x, c(x, η), η) = η.

Now we can define the semantics of the object language by

step(s, η) = if isli(s)then a(ac, arg(s), η)
else if isload(s) then a(ac, c(adr(s), η), η)

(3.11) else if issto(s) thena(adr(s), c(ac, η), η)
elseif isadd(s) then a(ac, c(adr(s), η) + c(ac, η), η)

which gives the state vector that results from executing an instruction and
(3.12)
outcome(p, η) = if null(p) then η else outcome(rest(p), step(first(p), η))

which gives the state vector that results from executing the program p with
state vector η.

The following lemma is easily proved.

(3.13) outcome(p1 ∗ p2, η) = outcome(p2, outcome(p1, η))

4 The compiler

We shall assume that there is a map giving for each variable in the expression
a location in the main memory of the machine loc(ν, map) gives this location
and we shall assume

(4.1) c(loc(ν, map), η) = c(ν, ξ)

5



as a relation between the state vector η before the compiled program starts to
act and the state vector ξ of the source program.

Now we can write the compiler. It is

compile(e, t) = if isconst(e) then mkli(val(e))
(4.2) else if isvar(e) then mkload(loc(e,map))

else if issum(e) then compile(s1(e), t) ∗mksto(t) ∗ compile(s2, t + 1) ∗mkadd(t)

Here t is the number of a register such that all variables are stored in
registers numbered less than t, so that registers t and above are available for
temporary storage.

Before we can state our definition of correctness of the compiler, we need
a notion of partial equality for state vectors

ζ1 =A ζ2,

where ζ1 and ζ2 are state vectors and A is a set of variables means that cor-
responding components of ζ1 and ζ2 are equal except possibly for values, of
variables in A. Symbolically, x /∈ A ⊃ c(x, ζ1) = c(x, ζ2). Partial equality
satisfies the following relations:

(4.3) ζ1 = ζ2 is equivalent to ζ1 ={} ζ2, where {} denotes the empty set ,

(4.4) if A ⊂ B and ζ1 =A ζ2 then ζ1 =B ζ2.

(4.5) if ζ1 =A ζ2 then a(x, α, ζ1) =A−{x} a(x, α, ζ2).

(4.6) if x ∈ A then a(x, α, ζ) =A ζ,

(4.7) if ζ1 =A ζ2 and ζ2 =B ζ3 then ζ1 =A∪B ζ3.

6



In our case we need a specialization of this notation and will use

ζ1 =t ζ2 to denote ζ1 ={x|x≥t} ζ2

and
ζ1 =ac ζ2 to denote ζ1 ={ac} ζ2

and
ζ1 =t,ac ζ2 to denote ζ1 ={x|x=ac∨x≥t} ζ2.

The correctness of the compiler is stated in

THEOREM 1. If η and ξ are machine and source language state vectors

respectively such that

(4.8) c(loc(v, η) = c(v, ξ), then
outcome(compile(e, t), η) =t a(ac,value(e, ξ), η).

It states that the result of running the compiled program is to put the
value of the expression compiled into the accumulator. No registers except the
accumulator and those with addresses ≥ t are affected.

5 Proof of Theorem 1.

The proof is accomplished by an induction on the expression e being compiled.
We prove it first for constants, then for variables, and then for sums on the
induction hypothesis that it is true for the summands. Thus there are three
cases.

I. isconst(e). We have

Justification
outcome(compile(e, t), η) = outcome(mkli(val(e)), η) 4.2

= step(mkli(val(e)), η) 3.12, 3.1
= a(ac, arg(mkli(val(e))), η) 3.1, 3.11
= a(ac, val(e), η) 3.1
= a(ac, value(e, ξ), η) 2.1
=t a(ac, value(e, ξ), η). 4.3, 4.4

7



II. isvar(e). We have

outcome(compile(e, t), η)
= outcome(mkload(loc(e,map)), η) 4.2
= a(ac, c(adr(mkload(loc(e))), η), η) 3.12, 3.2, 3.11
= a(ac, c(loc(e,map), η, η) 3.2
= a(ac, c(e, ξ), η) 4.1
= a(ac, value(e, ξ), η) 2.1
=t a(ac, value(e, ξ), η). 4.3, 4.4

III. issum(e). In this case, we first write

outcome(compile(e, t), η)
= outcome(compile(s1(e), t) ∗mksto(t)
∗compile(s2(e), t + 1) ∗mkadd(t), η) by 4.2

= outcome(mkadd(t), outcome(compile(s2(e), t + 1),

outcome(mksto(t), outcome(compile(s1(e), t), η)))) by 3.13

using the relation between concatenating programs and composing the func-
tions they represent. Now we introduce some notation. Let

ν = value(e, ξ),
ν1 = value(s1(e), ξ),
ν2 = value(s2(e), ξ),

so that ν = ν1 + ν2. Further let

ζ1 = outcome(compile(s1(e), t), η),
ζ2 = outcome(mksto(t), ζ1),
ζ3 = outcome(compile(s2(e), t + 1), ζ2),
ζ4 = outcome(mkadd(t), ζ3)

so that ζ4 = outcome(compile(e, t), η, and we want to prove that

ζ4 =t a(ac, ν, η).

8



We have

ζ1 = outcome(compile(s1(e), t), η)
=t a(ac, ν1, η) Induction Hypothesis

and

c(ac, ζ1) = ν1. 3.8

Now
ζ2 = outcome(mksto(t), ζ1)

= a(t, c(ac, ζ1), ζ1) 3.12, 3.3, 3.11
= a(t, ν1), ζ1) Substitution
=t+1 a(t, ν1, a(ac, ν1, η)) 4.5
=t+1,ac a(t, ν1, η) 4.5, 3.9

and

c(t, ζ2) = ν1 3.8

Next
ζ3 = outcome(compile(s2(e), t + 1), ζ2)

= t+1a(ac, ν2, ζ2).

Here we again use the induction hypothesis that s2(e) is compiled correctly.
In order to apply it, we need c(loc(ν,map),ζ2) = c(ν, ξ) for each variable ν
which is proved as follows:

c(loc(ν, map), ζ2) = c(loc(ν), map)a(t, ν1, η)) since loc(ν, map) < t
= c(loc(ν, map), η) for the same reason
= c(ν, ξ) by the hypothesis of the theorem.

Now we can continue with

ζ3 =t+1 a(ac, ν2, a(t, ν1, η)) by 3.9

Finally,

ζ4 = outcome(mkadd (t), ζ3)
= a(ac, c(t, ζ3) + c(ac, ζ3), ζ3) 3.12, 3.4, 3.11
= a(ac, ν, ζ3) Definition of ν, substitution
=t+1 a(ac, ν, a(ac, ν2, a(t, ν1, η))) 4.5
=t+1 a(ac, ν, a(t, ν1, η)) 3.9

=t a(ac, ν, η). 3.9, 4.6, 4.7

This concludes the proof.

9



6 Remarks

The problem of the relations between source language and object language
arithmetic is dealt with here by assuming that the + signs in formulas (2.1) and
(3.11) which define the semantics of the source and object languages represent
the same operation. Theorem 1 does not depend on any properties of this
operation, not even commutativity or associativity.

The proof is entirely straightforward once the necessary machinery has
been created. Additional operations such as subtraction, multiplication and
division could be added without essential change in the proof.

For example, to put multiplication into the system the following changes
would be required. 1. Add isprod(e), and p1(e), and p2(e) to the abstract

syntax of the source language.
2. Add a term

if isprod(e) then value(p1(e), ζ)× value(p2(e), ζ)
to Equation (2.1).

3. Add

isprod(e) ∧ Φ(p1(e)) ∧ Φ(p2(e)) ⊃ Φ(e)

to the hypotheses of the source language induction principle.
4. Add an instruction mul x and the three syntactical functions ismul(s)

adr(r), mkmul(x) to the abstract syntax of the object language together with
the necessary relations among them.

5. Add to the definition (3.11) of step a term

else if ismul(s) then a(ac, c(adr(s), η)× x(ac, η), η).

6. Add to the compiler a term

if isprod(e)thencompile(p1(e), t) ∗mksto(t) ∗ compile(p2(e), t + 1) ∗mkmul(t).

7. Add to the proof a case isprod(e) which parallels the case issum(e)
exactly.

The following other extensions are contemplated. 1. Variable length sums.

2. Sequences of assignment statements.
3. Conditional expressions.
4. go to statements in the source language.

10



In order to make these extensions, a complete revision of the formalism will
be required.

7 References

1. J. McCarthy, Computer programs for checking mathematical proofs, Proc.
Sympos. Pure Math. Vol. 5, Amer. Math. Soc., Providence, R. I., 1962, pp.
219-227.

2. ———–, ”A basis for a mathematical theory of computation” in Com-

puter programming and formal systems, edited by P. Braffort and D. Hersh-
berg, North-Holland, Amsterdam, 1963.

3. ———–, Towards a mathematical theory of computation, Proc. Internat.
Congr. on Information Processing, 1962.

4. ———–, A formal description of a subset of Algol, Proc. Conf. on
Formal Language Description Languages, Vienna, 1964.

11


