Let W be any non-empty set (of possible worlds). A model M
on W is a triple
![]()
where
![]()
and
![]()
Given any model M, we define a relation
as follows:

We will write ``
''
if we wish to make M explicit. A formula
is
said to be valid in M, denoted by
, if
for all
.
(By
, we mean
.) Furthermore,
we will employ the following notation:
![]()
A model M is a KT5-model if
(M1)
(M2)
for any
and
,
(M3)
for any
and
such that
,
(M4) r(S,t) is an equivalence relation for any
and
.
A set
of well formed formulas is said to be
realizable if there exists a KT-5 model M
and
such that
.