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Abstract

We propose a representation scheme for the declar-
ative formalization of strategies based on the situa-
tion calculus and circumscription. The formalism is
applied to represent a number of heuristics for mov-
ing blocks in order to solve planning problems in the
blocks world. It is demonstrated that circumscrip-
tion solves the problem of projecting the strategies
formalized in the paper, and that it allows us to de-
rive useful conclusions about their computability, cor-
rectness, redundancy, inconsistency, and the quality
of their solutions. Finally, an advice taking scenario is
presented to illustrate how a program capable of rea-
soning non-monotonically about declarative formal-
izations of strategies can have interesting reflective be-
havior.

Introduction

Strategic knowledge has traditionally been specified
using procedural programming languages or dynamic
logic (Harel 1984) (Harmelen & Balder 1992). This
paper proposes a representation scheme for the declar-
ative formalization of strategies for action selection
based on the situation calculus (McCarthy & Hayes
1969) and circumscription (McCarthy 1980) (Mc-
Carthy 1986).

The idea of representing strategies as sets of action
selection rules (Genesereth & Hsu 1989) is explored.
An action selection rule is an implication whose an-
tecedent is a formula of the situation calculus, and
whose consequent may take one of the following forms:
Good(a, sy, s), Bad(a, sy, s) or Better(a,as, sg,s). Ac-
tion selection rules are interpreted as follows: if the
conditions of the antecedent hold, then performing ac-
tion a at situation s is good, bad or better than per-
forming action a- for the purpose of achieving the goal
described by situation s, *.

!The situational argument sg in the predicates Good,
Bad and Better allows reasoning about multiple goals. For
example, by substituting the variable s, by two different

The following action selection rules describe some
heuristics for moving blocks in order to solve plan-
ning problems in the blocks world: (1) If a block can
be moved to final position, this should be done right
away; (2) If a block is not in final position and cannot
be moved to final position, it is better to move it to
the table than anywhere else; (3) If a block is in final
position, do not move it; (4) If there is a block that is
above a block it ought to be above in the goal configu-
ration but it is not in final position (tower-deadlock),
put it on the table®. A consistent set of action selection
rules defines a particular strategy.

(1) —Holds(Final(z,Sy),s)\
Holds(Final(x, Sg), Result(Move(x,y), s))
Good(Move(z,y), Sy, s)

1

(2) y #T AN —Holds(Final(z,Sy), s)A
—3zHolds(Final(x,Sy), Result(Move(z, 2), s)) —
Better(Move(z,T), Move(z,y), Sy, s)

3) Holds(Final(x, S,),s) —
Bad(Move(z,y), Sy, s)

(4) Holds(Tower-deadlock(z, Sy),s) —
Good(Move(z,T), Sy, s)

In addition to sets of action selection rules describing
particular strategies, we need some axioms that allow
a program to understand the predicates good, bad and
betterin terms of action selection. The predicate Better

constants Sy, and Sy, we can express the fact that per-
forming action a at situation s is good for the purpose of
achieving the goal described by situation Sg,, but bad for
achieving the goal described by situation Sy, .

2The concepts of final position and tower-deadlock will
be defined formally later on.



establishes a partial order among a set of actions with
respect to a given goal and a particular situation. The
following axiom says that an action is bad for a given
goal and a particular situation if there is a better action
for the same goal and situation®.

(5)  Better(ai,a2,Sy,s) = Bad(az, S, s)

An important issue in reasoning about strategies is
to foresee their consequences on action selection. We
will call the problem of determining what sequences of
actions can be selected according to a given strategy
the problem of projecting the strategy*. The projection
problem for strategies addresses the issue of character-
izing the behavior of a particular strategy (or a class
of strategies) when applied to solve a specific problem
(or a class of problems). We talk about the projection
problem of a strategy to distinguish it from the pro-
jection problem of the theory of action the strategy is
about, which addresses the issue of characterizing the
effects of the actions as opposed to the effects of the
strategy on action selection.

The following axiom addresses this issue by defining
a fluent called Selectable. A situation is selectable iff:
(1) it is the initial situation; or (2) it is the result of
performing a good action in a selectable situation at
which the goal has not been achieved®; or (3) it is the
result of performing a non-bad action in a selectable
situation at which the goal has not been achieved and
for which there are no good actions.

(6) Selectable(s) +» (s = SpV
Jsia(Selectable(si) A ~Achieved(Sy, s1)A

Prec(a, s1) A s = Result(a, s1) A (Good(a, Sy, s1)V
(—3bGood(b, Sy, 1) A —Bad(a, Sq, 51)))))

The introduction of axiom 6 describing the behav-
ior of the fluent Selectable allows us to apply the non-
monotonic machinery developed for reasoning about
action to the problem of reasoning about declarative
formalizations of strategies for action selection. In the

3The idea here is to select always the best possible
action.

*If we assume the existence of an initial situation Sp, the
problem of determining what sequences of actions may be
selected according to a particular strategy can be seen as
the problem of determining what situations are selectable
for that strategy.

SWe define Achieved(sy, s) and Prec(a, s) formally later
on. In general, a situation s achieves the goal described
by another situation sy if all the conditions (propositional
fluents) that hold at sy hold at s as well. Prec(a, s) is true
if action a can be performed at situation s.

same way circumscription can be used to jump to the
conclusion that a fluent does not change unless stated
otherwise (i.e., to solve the frame problem), it can be
used to assume that an action is “not good” or “not
bad” unless it can be deduced from the set of axioms
describing a strategy that it is so. This use of cir-
cumscription has some representational advantages, it
allows us to describe strategies: (1) succinctly, since
negative information (i.e., which actions are not good,
not bad or not better than others) need not be speci-
fied; (2) according to a least commitment strategy, in
which it is not necessary to state that an action is
good, bad or better than another unless it is known
for sure; and (3) incrementally, because the application
of circumscription is designed in such a way that the
conclusions about the selectability of different situa-
tions adapt automatically to the addition of consistent
heuristics which may become available later on.

Blocks World Example

In this section and the next, we show how the ideas
outlined above can be applied to formalize and reason
about heuristics for moving blocks in order to solve
planning problems in the blocks world. The strategies
formalized in the paper describe different algorithms
for solving planning problems in the elementary blocks
world domain (Gupta & Nau 1991). First, we summa-
rize a very elegant and simple formalization of STRIPS
in the situation calculus, and its application to reason-
ing about action in the blocks world, described in (Mc-
Carthy 1985). Then, we propose a nested abnormality
theory (NAT) (Lifschitz 1995) that solves the problem
of projecting the strategy described by axioms 1 to 4.
In section 3, this theory is generalized into a class of
NAT’s which apply circumscription in a particular way
that is useful for studying the projections of declara-
tive formalizations of strategies of the sort described
in this paper.

In (McCarthy 1985), John McCarthy proposes a
very simple formalization of STRIPS (Fikes & Nils-
son 1971) in the situation calculus. The formalization
is as follows. STRIPS is a planning system that uses
a database of logical formulas to represent information
about a state. Each action has a precondition, an add
list, and a delete list. When an action is considered,
it is first determined whether its precondition is satis-
fied. If the precondition is met, then the sentences on
the delete list are deleted from the database, and the
sentences on the add list are added to it.

There are variables of the following sorts: for situa-
tions (s,s1, ...), for actions (a, a1, . ..), and for propo-
sitional fluents (p, p1, ...)%. Associated with each sit-

6In the paper, we use the expression “propositional flu-



uation is a database of propositions, and this gives us
the wif DB(p,s) asserting that p is in the database as-
sociated with s. The function Result maps a situation
s and an action a into the situation that results when
action a is performed in situation s.

STRIPS is characterized by three predicates: (1)
Prec(a,s) is true provided action a can be performed in
situation s; (2) Delete(p,a,s) is true if proposition p is
to be deleted when action a is performed in situation
s; (3) Add(p,a,s) is true if proposition p is to be added
when action a is performed in situation s. STRIPS has
the single axiom

(7 DB(p, Result(a, s)) <
(Prec(a, s) A (Add(p, a, s)V

(DB(p,s) A —Delete(p, a, s))))V
(=Prec(a,s) AN DB(p, s))

In (McCarthy 1985), an example of how to use this
formalization of STRIPS to reason about action in
the blocks world is given. The example is as follows
(we have modified the initial conditions, and added a
uniqueness of names axiom). The variables z, y and
z range over blocks. The constant blocks used in the
example are A, B, C, D, E, F, and T (for Table). The
one kind of propositional fluent is On(z,y) describing
the fact that block z is on block y. The one kind of
action is Mowe(,y) denoting the act of moving block z
on top of block y. We assume uniqueness of names for
every function symbol, and every pair of distinct func-
tion symbols?. The initial situation Sy is described
by axiom 9. The precondition, delete and add lists of
Mowe(z,y) are characterized by axioms 10, 11 and 12,
respectively.

8) (@) # 9(G) A (M(ZF) = hG) = T =7)

((a=AAy=B)V(z=BAy=T)V
(xr=CAy=E)V(x=DAy=T)V

(x=EANy=D)V(z=FAy=T)))

(10) Prec(a, s) +» Jzy(a = Move(z,y)A
Vz-DB(On(z, ), s)A

ent” and the word “proposition” to refer to the correspond-
ing reified formula.

"The symbols h and g are meta-variables ranging over
distinct function symbols; the expressions & and §f represent
tuples of variables.

(y 2T — V2=DB(0n(z,y),s))A
-DB(On(z,y),8) A #T ANz #y)

(11) Delete(p, a, s) + Azyz(p = On(z, 2)A
a = Move(z,y) ANz #y)

(12) Add(p, a,s) +» Jzy(p = On(z,y)A
a = Move(z,y))

For example, from axioms 7 to 12 we can prove that®

DB(p, Result({Move(A,T), Move(C, B),

Move(A,C)},So)) < Jzy(p = On(z,y)A
((z=AANy=C)V(z=BAy=T)Vv
(x=CAy=B)V(z=DAy=T)V

(xt=EAy=D)V(x=FAy=T)))

In order to interpret action selection rules, such as
axioms 1 to 4, in terms of the theory of action described
above, we need to establish a connection between what
holds at a situation and what is in the database asso-
ciated with that situation.

The databases in the formalization of the blocks
world presented above contain only propositional flu-
ents of the form On(z,y) for z, y € {A,B,C,D,E,F,T}.
These propositional fluents are called frame fluents
(McCarthy & Hayes 1969) (Lifschitz 1990), since any
configuration of the blocks A,B,C,D,FE, and F can be
described by combinations of their values®.

(13) Frame(p) + Jwz(p = On(w, 2)A
( \/ (w=rc1Nz=cp)))

C1,C2 E{A,B,C,D,E,F,T}

The following axiom states that a frame fluent holds
at a particular situation if and only if it is in the
database associated with that situation.

(14) Frame(p) — (Holds(p, s) +» DB(p, s))

The expression s < s; means that s; can be reached
(Reiter 1993) from s by executing a nonempty sequence

8We use the following notation to abbreviate the
description of situations Result({},s) = s, and
Result({a|l}, s) = Result(l, Result(a, s)), where [ is a se-
quence of actions (i.e., sequences of actions are applied from
left to right).

9The symbols ¢i and ¢, are syntactical variables ranging
over block constants.



of actions (s < s is an abbreviation for s < s1Vs = s1)
10 We include domain closure axioms for blocks, ac-
tions and situations. Axiom 16 restricts the domain of
situations to those that can be reached from the ini-
tial situation Sy or from the goal situation S,. Finally,
we introduce an axiom of induction for situations 17,
which allows us to prove that a property holds for all
the situations that can be reached from a given situa-
tion.

(15) Vs(—s < Sp A—s < Sg)A
Vassi(s < Result(a,s1) > Prec(a,s1) As < s1)

(16) Ve(zr=AVz=BVvz=CVz=DV
r=EVx=FVz=T)A
Va( \/

c1,c2€{A,B,C,D,E,F,T}
VS(SO < SVSg < 5)

a = Move(er,c2))A

VP(P(s) AVsia(s < s1 A P(s1) A Prec(a, s1) =
(17) P(Result(a,s1))) = Vs2(s < s2 = P(s2)))

In addition to frame fluents, we use a number of
derived fluents, such as clear, final, above, tower-
deadlock, terminal, and achieved, which are partially'!
defined in terms of the frame fluents.

(18) Holds(Clear(x),s) «>z =TV
—JyHolds(On(y,x),s)

ONotice the distinction between Achieved(Sy, s) (axiom
23) and reachable < (axiom 15). It is crucial for under-
standing the role of the goal situation Sy in the formaliza-
tion. The fact that axiom 15 implies that the goal situation
Sy is not reachable from the initial situation So does not
imply that the planning problem is not solvable. When the
program selects an action (see axiom 6 defining the fluent
selectable), it tries to find a situation reachable from the
initial situation at which the goal is achieved. That is, a
situation that satisfies the conditions imposed on the goal
situation. In this sense, we could say that the role of the
goal situation Sy is purely descriptive, as far as this paper
is concerned.

" Axioms 19 and 20 are not explicit definitions of final
and above, because these symbols occur both on the left and
right hand sides. But these formulas are strong enough
for deriving both positive and negative ground instances
of Holds(Above(z,y),s) and Holds(Final(z,S,),s) from the
positive and negative ground instances of Holds(On(z,y),s)
that can be derived from axioms 7 to 17. (Davis 1990)
points out that it is possible to define on in terms of beneath
(beneath(y, ) = above(x,y)), but it is not possible to fully
define beneath in terms of on in a first order theory.

(19) Holds(Final(z,Sy),s) ¢
(Holds(On(z,T),s) AN Holds(On(z,T), S,))V
Jy(Holds(Final(y, S,), s)A

Holds(On(z,y),s) A Holds(On(z,y), Sy))

(20) Holds(Above(z,y),s) <
Holds(On(z,y), s)V
Az(Holds(On(z, z),s) A Holds(Above(z,y), s))

(21) Holds(T ower-deadlock(z, Sy), s) <>
—Holds(Final(z,S,),s) N y(y # TA
Holds(Above(z,y),s) N Holds(Above(z,y), Sy))

(22) Terminal(s) < Selectable(s)A
—JaSelectable(Result(a, s))

Achieved(S,, s) +
(23) Vp(DB(p,s) +» DB(p,S,))

Axiom 24 describes the configuration of the goal sit-
uation Sy. In general, a problem will be described by
a set of conditions on some initial and goal situations.
The particular problem described by axioms 9 and 24
characterizes completely the state of the initial and
goal situations, but this needs not be the case. Speci-
fying a set of constrains on initial and goal situations
allows defining classes of problems, instead of partic-
ular instances. Such constraints can be used then to
reason about the behavior of different strategies on a
class of problems.

(24) DB(p, Sy) +» dzy(p = On(z,y)A
((z=ANy=C)V(x=BAy=T)V
(t=CANy=B)V(r=DANy=T)V
(xt=EAy=D)V(xz=FAy=T)))

The formulas presented so far allow us to prove that
some actions are good, bad or better than others for a
given goal and a particular situation. But we aren’t
still able to decide which situations are selectable ac-
cording to a particular strategy. Action selection rules
do not give us complete information. They don’t tell us
which actions are “not good”, “not bad”, or “not bet-
ter” than others. In order to interpret them in terms of
action selection (using axiom 6), we need to be able to
jump to the conclusion that an action is "not good” or
“not bad” unless the heuristics known so far (axioms 1
to 4) imply that it is so. This incompleteness of our for-
malization is also one of its main advantages, because



it allows us to refine the problem solving strategy of a
program by simple additions of better heuristics. We
illustrate this idea with an advice taking scenario later
on.

The nested abnormality theory described below char-
acterizes the behavior of the strategy described by ax-
ioms 1 to 4 when it is applied to solve the problem
described by axioms 9 and 24. That is, it allows us
to determine what situations (and, therefore, what se-
quences of actions) can be selected according to the
strategy. Let ¥ be the conjunction of the universal
closures of the formulas 6 to 24.

(25) Y, {Better, min Bad : 5,
{min Good : 1,...,4}}

The expression 25 describes a nested abnormality
theory in which circumscription is applied in the fol-
lowing way. The predicate Good is circumscribed with
respect to the universal closures of the axioms describ-
ing the strategy of the program (axioms 1 to 4). The
predicate Bad is circumscribed with respect to the re-
sult of the circumscription described above and the
universal closure of axiom 5, which contributes to the
definition of Bad with positive instances of Better. We
need to let Better vary, because minimizing the exten-
sion of Bad may affect (through axiom 5) the extension
of Better. The latter circumscription, which character-
izes the extensions of the predicates Good and Bad, is
conjoined with X, which describes the theory of action
assumed for the blocks world (axioms 7 to 23), the spe-
cific problem reasoned about (axioms 9 and 24), and
the mechanism for action selection (axiom 6).

Theorem 1 The nested abnormality theory de-
scribed by 25 is equivalent to the second order logic
theory whose axioms are X, plus the universal closures
of formulas 26 and 27.

(26) Good(Move(z,y), Sg,s) ¢

(Holds(Tower-deadlock(x, Sy),s) Ny =T)V
(~Holds(Final(z,Sy), s)

Holds(Final(x,Sy), Result(Move(x,y), s)

>

)

~—

(27) Bad(Move(z,y), Sy, s) <
Holds(Final(x,Sy), s)V

(y # T AN —Holds(Final(x,S,), s)A
—3zHolds(Final(z,S,), Result(Move(z, 2), s)))

Proof The characterization of the semantics of
NAT’s in terms of second order logic theories includ-
ing circumscription formulas and proposition 1 in (Lif-
schitz 1995) allow us to prove the equivalence between
the following axiom sets!Z.

Y, {Better, min Bad: 5, {min Good : 1,...,4}} =
Y, CIRC(5', CIRC(1',...,4'; Good); Bad; Better)

Now, we use several rules for computing circumscrip-
tion described in (Lifschitz 1993). The first equivalence
below can be proved using formula (19) and proposi-
tion 2 in (Lifschitz 1993). The second equivalence uses
formula (19) and proposition 3 in that paper.

Y, CIRC(5',CIRC(1,...,4"; Good); Bad; Better) =
Y, CIRC(5',3',2',26'; Bad; Better) =
%, 26, CIRC(3', Jbetter(5' A2'); Bad)

Using the equivalence (27) in section 3.2 of (Lifs-
chitz 1993), we can prove that Jbetter(5’ A 2')(better)
is equivalent to the following formula, which does not
depend on better.

(28) y # T AN —Holds(Final(z,Sg), s)A
—3zHolds(Final(x,Sy), Result(Move(z, 2), s)) —
Bad(Move(z,y), S, s)

Finally, predicate completion (Lifschitz 1993) give
us the result of the theorem.

%, 26', CIRC(3', 28'; Bad) = %, 26/, 27’ S

Theorem 1 shows that the nested abnormality theory
described by 25 is equivalent to the second order theory
whose axioms are X, 26 and 27. This means that using
theorem proving methods for first order logic'?® we can
decide the selectability of any situation with respect
to the strategy described by axioms 1 to 4. For exam-
ple, we can prove that action Move(A,T) is selectable
at So (i.e., Selectable(Result(Move(A,T),So))), but
action Move(C,T) is not (i-e.,
—Selectable( Result(Move(C,T), So)))-

2n the following, we denote the universal closure of a
formula A by A’.

13Notice that the only second order axiom in ¥ is an
axiom of induction for situations, which we do not need to
decide the selectability of a single situation.



Advice Taking Scenario

The nested abnormality theory described by 25 not
only solves the problem of projecting a specific strat-
egy, it also describes a particular use of circumscription
that allows reasoning about declarative formalizations
of strategies of the sort proposed in this paper. The
expression 25(strategy) denotes the nested abnormal-
ity theory described by 25 parameterized for different
strategy descriptions'4. The idea is to replace axioms 1
to 4 by other sets of axioms describing different strate-
gies, so that we can reason about the behavior of dif-
ferent strategies.

25(strategy) = X, {Better, min Bad : 5,
{min Good : strategy}}

We describe a scenario in which a program uses
25(strategy) to reason about declarative formalizations
of strategies. The program starts with an empty strat-
egy. As different heuristics are suggested by the ad-
viser, the program considers how they may affect its
problem solving behavior, and reacts accordingly.

The scenario tries to illustrate the idea that a pro-
gram capable of reasoning non-monotonically about
declarative formalizations of strategies can have in-
teresting reflective behavior (McCarthy 1990b) (Mc-
Carthy 1995) (Steels 1996) (Sierra 1996). For example,
it can save computational resources by detecting un-
computable or incorrect strategies. It can determine
which of the heuristics is told improve, are redundant,
partially redundant, or inconsistent with its current
strategy. It can improve its problem solving strategy,
accordingly, by adding and substituting action selec-
tion rules and axioms. It can avoid inconsistencies,
which may cause it to have an arbitrary behavior. It
can learn by taking advice (McCarthy 1959), and re-
flecting on it.

Initially, the advisor suggests to use the following
heuristic: If a block can be moved to final position, this
should be done right away. The program constructs
Strategy-1, which is described by axiom 1. The projec-
tion of Strategy-1 allows cyclic behaviors, such as the
one described in fig. 1. The program concludes that
Strategy-1 is not computable.

We use the following formula to identify cycles in the
projections of state-based strategies'®. The expression
s < s; means that there is a nonempty sequence of

"“The expression 25(strategy) can also be parameterized
with respect to the problem description (axioms 9 and 24),
the theory of action (axioms 7 to 23), or the mechanism for
action selection (axiom 6).

15 A strategy is state-based if whether an action is good or
bad for a given goal at a particular situation depends only

. (8] [D]
INITIAL S GOAL
\‘ *
l :
1
1
-
B/c[p| [F] [a[B] [p] [F] [a[3] [D]
» ]
[B[c[o[e[F]  [A[B[c[D] [F]
[A[B[CID[ETF]
strategy-1 ol strategy-4 —
strategy-2 strategy-5 - .. p
strategy-3

Figure 1: Behavior of different strategies for solving
planning problems in the blocks world: (1) Strategy-1
and Strategy-3 are both uncomputable, since they allow
cyclic behaviors; (2) Strategy-2 describes a computable
but incorrect strategy, its unique terminal situation is
not a solution; (3) Strategy-4 and Strategy-5 describe
two computable and correct strategies, together with
their projections for a particular blocks world problem.
It can be easily observed that Strategy-J is better than
Strategy-4.



selectable situations that leads from s to s1. A state-
based strategy contains a cycle (axiom 30) if there is a
nonempty sequence of selectable situations that leads
from a situation s to a different situation s; with the
same associated state (i.e., whose associated database
contains the same formulas as the database associated
with s).

(29) Vs(—s < So A =8 < Sg)A
Vass1(s < Result(a, s1) <
Selectable(Result(a,s1)) A s < s1)

(30) Cycle(s,s1)
s < s1 AVp(DB(p, s) +» DB(p,s1))

In particular, the program can prove that
dss1Cycle(s, s1) holds in the projection of Strategy-1
by finding appropriate values for s and s;.

25(Strategy-1) F Cycle(So,
Result({Move(C,T), Move(C, E)}, So))

The program asks for more advice, instead of trying
to apply Strategy-1 to solve the problem. The advisor
proposes a different heuristic: If a block is not in final
position and cannot be moved to final position, it is
better to move it to the table than anywhere else. The
program constructs Strategy-2, which is described by
axiom 2 16, The projection of Strategy-2 is shown in
fig. 1. Strategy-2 is an incorrect strategy, because it
allows terminal situations which do not satisfy the goal
conditions.

25(Strategy-2) + Terminal(Result({Move(A,T),
Move(C,T), Move(E,T)}, So))A\

—Achieved(Sy, Result({Move(A,T),

Move(C,T), Move(E,T)}, S0))

The program still needs more advice. The advi-
sor suggests now to consider both heuristics together.

on what holds at that situation (i.e. the state associated
with that situation), and not on what situations or actions
have been selected so far. All the strategies considered in
the paper are state-based.

16 Strategy-2 is defined, in fact, by two action selec-
tion rules. The first one is axiom 2, the second is
as follows Holds(Final(z,Sy),s) A Holds(On(z,T),s) —
Bad(Move(z,y),Sg,s). This rule guarantees that the
strategy terminates as shown in fig. 1. The rest of the
strategies that terminate do not need this rule, because it
is subsumed by axiom 3.

The program constructs Strategy-3, which is described
by axioms 1 and 2. The projection of Strategy-3 still
allows cyclic behaviors, such as the one described in
fig. 1, i.e. it satisfies dss; Cycle(s, s1).

25(Strategy-3) + Cycle(Result(Move(C,T), Sy),
Result({Move(C,T), Move(E,T), Move(E, D)}, So))

The advisor suggests a third heuristic: If a block is
in final position, do not move it. The program con-
structs Strategy-4 as the set of axioms 1 to 3. The set
of situations that are selectable according to projection
of Strategy-4 (see fig. 1) is finite. The program knows
the strategy is correct, since all its terminal situations
happen to be solutions. The second order axiom of
induction for situations (17) is needed here in order to
prove that —Terminal(s) holds for all the situations
not mentioned in the theorem below.

25(Strategy-4) b (Terminal(s) — Achieved(Sy, s))A
(Terminal(s) + s = Result({Move(A,T),

Move(C, B), Move(A,C)}, So)V

s = Result({Move(C,T), Move(A,T),

Move(C, B), Move(A,C)}, So))

The advisor suggests a fourth heuristic: If there is a
block that is above a block it ought to be above in the
goal configuration but it is not in final position (tower-
deadlock), put it on the table. The program constructs
Strategy-5 as the set of axioms 1 to 4. The set of
situations that are selectable according to projection
of Strategy-5 (see fig. 1) is finite. The program can
prove that Strategy-5 is correct. It can also conclude
that Strategy-5 is better than Strategy-4, since it al-
ways solves the problem performing a smaller or equal

number of actions!?.

25(Strategy-5) - (Terminal(s) — Achieved(Sy, s))A
(Terminal(s) +> s = Result({Move(A,T),
Move(C, B), Move(A,C)}, So))

The advisor still suggests a fifth heuristic: If a block
is on the table but not in final position, do not move
anything on that block.

Holds(On(z,T),s) N ~Holds(Final(z, Sy),s) =
(31) Bad(Move(z,x),S,,s)

"It compares the maximum length of the solutions gen-
erated by strategies 4 and 5.



The program constructs Strategy-6 as the set of ax-
ioms 1 to 4 and 31. It can check that the projections
of Strategy-5 and Strategy-6 are identical. This means
that suggestion 31 is redundant with its current strat-
egy. Therefore, including it in the database will not
improve the program’s behavior.

The advisor finally suggests a sixth heuristic: If there
is a block that is above a block it ought to be above in the
goal configuration but it is not in final position (tower-
deadlock), it is better to move it on top of a clear block
that is in final position and should be clear on the goal
configuration than anywhere else.

(32) Holds(Tower-deadlock(x, Sy), s)A
Holds(Clear(z),s) A Holds(Final(z,Sy), s)A
Holds(Clear(z),Sg) Nz # w —
Better(Move(z, z), Move(z,w), Sq, s)

We use the following formula to detect inconsisten-
cies in the projection of a strategy. The formulas 29,
30 and 33 are examples of verification axioms that can
be added to X in order to reason about the behavior
of different strategies.

(33) Bad(a, Sy, s) = ~Good(a, Sy, s)

The program constructs Strategy-7 as the set of ax-
ioms 1 to 4 and 32. Although axiom 32 describes a
plausible heuristic, it is in contradiction with axiom
4. For example, axiom 4 implies that Move(A,T) is
good in the initial situation, whereas axioms 5 and 32
imply that Move(A,T) is bad'®. Using axiom 33, the
program can prove that Strategy-7is inconsistent.

25(Strategy-7) - Good(Move(A,T), Sy, S0)A
=Good(Move(A,T),Sy,S0)

Therefore, it rejects suggestion 32, because it is in-
consistent with its current strategy.

Conclusions

In this paper, we have considered a particular plan-
ning problem in which the states of both the initial
and goal situations are completely determined. In-
teresting reasoning about strategic knowledge is con-
cerned with classes of problems, instead of particular
instances. The representation scheme and reasoning
method proposed have however a broader scope. They

8Notice that axiom 32
Better(Move(A,F),Move(A,T),Sg,5).

implies

can also be applied to entire classes of problems, pro-
vided these classes of problems are appropriately ax-
iomatized.

The point of focusing on the study of a particular
example was to illustrate potential applications of rea-
soning about declarative formalizations of strategies in
a simple setting. We have seen, for example, that
the techniques presented are useful to determine the
computability and correctness of a particular strategy
(or a class of strategies) with respect to a given prob-
lem (or a class of problems). We have also considered
issues involved in updating and composing strategic
knowledge from different sources, such as determining
whether a set of heuristics improve, are inconsistent
or redundant with a particular strategy (or a class of
strategies). The possibility of reasoning about these
issues, together with the natural compositionality of
the declarative formalization of strategies proposed, al-
low a program to reflect on its own behavior, and im-
prove its problem solving strategy by simple additions
or substitutions of sentences, much in the same way it
happens in natural language. This is perhaps the best
feature of the language, its elaboration tolerance (Mc-
Carthy 1988). The flexibility of adapting smoothly to
conceptual changes in the specification of a problem or
its solution is a very important feature that procedural
or dynamic logic languages do not have.

There are a number of interesting issues about the
declarative formalization of strategies we have not con-
sidered. We have formalized only state-based strate-
gies. An important number of strategies depend on
chronological information, such as whether an action
has been selected at a particular situation. The related
problem of formalizing control information in the situ-
ation calculus is addressed by (Lin 1997). Derivations
in logic programming are identified with situations,
and a fluent accessible is defined in order to character-
ize those situations which correspond to derivations of
Prolog programs including cut. Our work differs from
(Lin 1997) in two aspects: (1) the emphasis on repre-
sentation, in particular, on proposing a representation
scheme for the declarative formalization of strategies;
and (2) the use of non-monotonic reasoning to achieve
elaboration tolerance and reflection.

Planning is one of the most challenging problems.
Humans are sometimes able to come up with heuristics
such as those formalized here. A deeper understand-
ing of a domain may allow programs to come up with
them as well. Issues such as the safeness and postpon-
ability (McCarthy 1990a) of certain actions and situa-
tions, with respect to the achievement of certain goals,
underly the design of the heuristics formalized for the
blocks world. Our hypothesis is that these issues may



play a crucial role in the problem of automating the
design of heuristics, which we have only begun to in-
vestigate.
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