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1 Introduction

The frame problem, the problem of efficiently determining which things remain the same in a

changing world, 1 has been with us for over a quarter of a century – ever since the publication

of McCarthy and Hayes’s famous essay, “Some Philosophical Problems from the Standpoint

of Artificial Intelligence,” in 1969. A quarter of a century is a very long time in the time

frame of computer science, and especially in the history of Artificial Intelligence (AI), which

has itself been around for only about 40 years. Indeed, it is not much younger than the

advent of logicist AI (McCarthy, 1958), that brand of AI which attempts to formalize

reasoning, particularly common-sense reasoning, within mathematical logic. Present since

the early years of AI, the frame problem has festered within the AI community. It has drawn,

and continues to draw, manpower and talent from the pool of AI researchers, particularly

from the logicist community. It has pitted logicists against antilogicists, who argue that the

attempt to capture common-sense reasoning within formal logic is doomed to failure. In

fact, it was a major factor in the rather public and shocking (for AI standards) conversion

of a stalwart logicist, Drew McDermott, to a confirmed antilogicist (McDermott, 1987).

Twenty-six years may not seem like a long time to philosophers and mathematicians

1This is a loose, and not quite precise, definition of the frame problem. In fact, one of the problems with

the frame problem is the fact that everybody seems to define it a little differently. See section 3 for a serious

investigation of what exactly the frame problem is.
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(presumably the colleagues and spiritual brethren of AI logicists), whose problems are

often so much older. Fermat’s Last Theorem (that is, the problem of whether it is or

is not a theorem) stayed with us for over three centuries before it was solved (Wiles, 1995).

Philosophers have lived for over 2,000 years with the Liar Paradox. The problems that

arise from the inherent inconsistency of determinism and free will have been around for at

least that long. But these problems do not threaten the mathematical and philosophical

communities in any way. It would seem rather ridiculous if a group of mathematicians,

after spending twenty-five years on Fermat’s Last Theorem, had thrown up their hands

and declared that it was quite impossible to come up with a solution and that there was

no point working on it anymore, or if some philosophers declared the entire endeavor of

analytic philosophy to be quite worthless due to their inability to find a solution to the

Liar Paradox. Yet AI researchers have publicly declared that the failure of logicist AI to

produce a solution to the frame problem has amply demonstrated the inadequacy of the

logicist approach.

Lest it be argued that it is precisely the venerable age of classic mathematical and

philosophical problems that has protected them from the kind of furor accompanying the

analysis of solutions to the frame problem, it should be noted that there are plenty of

relatively young and unsolved problems that are not nearly as derided as the frame problem.

The Paradoxes of Confirmation have stood as a challenge to the philosophy of science since

the mid-1940s (Hempel, 1945). The P = NP? question has remained unsolved since it

was first presented and conjectured that P 6= NP (Cobham, 1964; Edmonds, 1965; Cook,

1971). Yet philosophers of science and theoretical computer scientists are not threatened,

or humiliated, or torn apart by the lack of solutions.

What, then, makes the frame problem different? What is to account for the feeling

of failure on the part of those AI researchers who have tried so hard to solve the frame

problem? There are four reasons:

[1] The frame problem should not be as difficult as other long-standing problems. Many open

problems are genuinely unsolvable. A paradox arises because several deeply seated intuitions

turn out to be mutually inconsistent. The Liar Paradox, for example, is paradoxical precisely

because some of our deeply believed intuitions about language, such as:
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(i) that a language should be able to include a fully expressive quotation construct and its

own truth predicate

(ii) that if a sentence is said to be true, it is in fact the case

(iii) that a sentence is either true or false

are inconsistent.

Likewise, the Paradoxes of Confirmation exist because our intuition that a black raven

confirms, and a white swan does not confirm, the hypothesis that all ravens are black

directly contradicts our intuition that if an object confirms one statement, it confirms all

logically equivalent formulations of that statement.

So it is not surprising that years of examining the problem (in the case of the Liar Para-

dox, thousands of them) have not yielded a completely satisfactory solution: all solutions

will to some extent seem unsatisfactory because they will violate at least one intuition. The

same can be said for the dilemma of determinacy versus free will. These two concepts seem

so inherently opposed that any attempt to resolve them smacks of casuistry and thus is not

satisfactory.

Other open problems are just inherently difficult. Intuitions on the equivalence of de-

terministic and nondeterministic linear bounded automata are often weak. Even in cases

in which one has a strong intuition about an open problem (it has been conjectured from

the start that P is not equal to NP), there is a wide gap between the tenuousness of an

intuition (often based on the consequences of a particular solution to an open problem) and

the solid reasoning needed for a formal proof.

However, all this does not apply to the frame problem. The frame problem, after all,

is quite straightforward, even mundane. Every five-year-old can reason that most things

stay the same as time passes – and, presumably, without having explicit knowledge of, or

reasoning about, all the things that do not change. The reasoning process seems uncom-

plicated. Thus the frustration of AI researchers who cannot capture this straightforward

reasoning within formal logic is all the more acute.

[2] The frame problem is one of the core problems of temporal reasoning. As such, solving

the frame problem is necessary for the future development of logicist AI.

Many open problems, although they may have enormous practical import, can be fac-
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tored out of their disciplines. Solutions are not necessary for future progress. For example,

the Liar Paradox challenges philosophers of language, since any theory based on a language

that contains its own truth predicate and quotation can be inconsistent. But researchers

can proceed by assuming one of the (not-so-satisfactory) suggested resolutions, and subse-

quently ignore the issue. Fermat’s Last Theorem is certainly interesting, but it does not

lie at the core of mathematics. A lot of interesting mathematics was possible before its

solution.

In contrast, solving the frame problem is central to temporal reasoning, and temporal

reasoning is central to AI. It is necessary for planning, explanation, and diagnosis. It arises in

and is central to virtually every interesting area of AI. This is precisely why many researchers

have shunned the logicist approach entirely and opt to be proceduralists. Proceduralists

can ignore the frame problem, as we see in section 5.2, although this approach is sometimes

not entirely correct.

[3] So much has been written; so little progress has been made.

The sheer bulk of published research papers on the frame problem is stupefying. There

have been entire symposiums devoted to the subject, and large sections of major conferences

still focus exclusively on the frame problem. Yet there is little feeling that we have made

genuine progress.

Progress here is not synonymous with solution. Even when difficult problems are not

solved, there can be a definite feeling of progress. Research on the Liar Paradox, for example,

has made explicit the inconsistent set of intuitions underlying the paradox, suggested novel

methods of (partial) resolution (Kripke, 1975), studied the consequences of various attempts

at a resolution, and identified families of paradoxes (see, e.g., the collection of papers in

Martin, 1984). Thus, there has been both intellectual and practical progress.

In contrast, the work on the frame problem seems Sisyphean in its nature. The general

pattern of the research looks something like this: A toy problem, presumably meant to be

a characteristic instance of the frame problem, is introduced; a solution is proposed; a new

variant on the toy problem is introduced; it is discovered that the old solution cannot solve

the new toy problem, and so on.

Now, there may be superficial similarities between this scenario and the description that
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Kuhn (1970) gave of scientific research: There exists an unsolved set of problems; a solution

(the first of a sequence of solutions within a paradigm) is proposed; it is discovered that the

solution cannot solve some related problem(s); so the solution is modified (and is the next

in the sequence in that paradigm); and so on, until this paradigm becomes useless, and a

new one is suggested.

But the analogy does not hold up. The smallest twiddle on a toy problem frequently

invalidates all known solutions to the original toy problem; clearly, these solutions were very

narrow.

It is this lack of robustness which has frustrated logicists and disillusioned the AI com-

munity. The expression of this feeling is evident in McDermott’s (1987) comment on one

of the attempted solutions to the frame problem (Lifschitz, 1987), which was then believed

to be an adequate solution: What happens the next time? Will Lifschitz always be there

to bail us out?

Nobody has very much confidence that the attempts at solutions that are around now

work on anything but a small set of toy problems. There is no sense that these “solutions”

have in any way attacked the essence of the frame problem.

[4] Computer scientists are used to getting things done. (This does not apply to theoretical

computer scientists, who are just mathematicians in disguise.) If a program does not do

what its designer intended, the computer scientist will modify the program so that it does

its intended task. The frame problem is all about getting things done, or more precisely,

about making the proper inferences. It is the problem of determining what stays the same

about the world as time passes and actions are performed – without having to explicitly

state all the things that stay the same. The inability to simply code up the axioms that will

allow these inferences is a source of fathomless frustration to the AI researchers who aim to

solve this problem. It goes against the whole hacker experience (and even AI logicists have

some of the hacker mentality in their blood).

This is not the experience of the philosopher whose task is often to explicate underlying

issues and not necessarily to provide solutions. Mathematicians, of course, are supposed to

solve problems – but they are more inured to failure. Computer scientists have not gotten

this far.
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1.1 Where do we go from here?

So we have established that the AI researcher is perfectly justified in feeling depressed and

frustrated and disillusioned about the current state of research in the frame problem. What,

then, are we to do? There are two approaches. One is to admit defeat – to resign oneself

to the belief that no solution to the frame problem is possible and to proceed with research

as best as one can. That is, to try to ignore the frame problem as much as possible. Now,

it was argued earlier that one cannot ignore the frame problem; that it is too central to

the problem of temporal reasoning within logicist AI to just ignore. Thus, admitting defeat

for the frame problem entails admitting defeat for the entire logicist enterprise. The sole

alternative is modeling temporal reasoning within proceduralist AI. Drew McDermott is

one of the many who have chosen this approach.

The second approach is posited on the notion that genuine progress on the frame problem

is possible. A direct consequence of this supposition is that the existing twenty-odd years

of research on the frame problem 2 must be flawed in some respects. The idea, then, is to

investigate what these flaws are, to determine how to avoid these flaws, and to suggest a

course of research in which genuine progress is possible. This second approach is the one in

which I believe, and the remainder of this chapter is dedicated to its advancement.

Why have I chosen this approach? Primarily, because of a deep commitment to, and

a genuine belief in, logicist AI: the belief that common-sense reasoning can be captured

within a formal language. The evidence seems strong and has been articulated by many

(Hayes, 1977; McDermott, 1978, before his apostasy; Newell, 1981): A formal language

like logic gives us the ability to give a semantics, or meaning, to the sentences we use; it

gives us rules of inference that are sound and complete and mirror at least some of the

reasoning that we do. It allows us to reason about our reasoning processes in a coherent

way, in much the same way that articulate people can describe their reasoning processes

within natural language. For all of its drawbacks, it is the richest, most correct language

and system of reasoning that we have. To give up on this commitment, simply because

nothing has worked for twenty-six years, seems like taking the easy way out. Related to

2Most of which has taken place since the publication of the Yale Shooting Problem (Hanks and McDer-

mott, 1986)
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this point is the suspicion that procedural AI may be easier in the short run, but is not the

panacea that some assume. In particular, if a program is not solidly based upon a theory,

it is likely to be ad hoc (and if it is based on a formal theory, we have not given up logicist

AI). Finally, there is an element of sheer orneriness here – we are not going to quit just

because the going gets a little tough.

The remainder of this chapter is organized as follows: First we will attempt to define

what the frame problem really is. As we shall see, there is no single definition of the

frame problem, since many researchers have defined the frame problem in different ways.

We present a collection of such definitions, organized from the most specific to the most

general. It is our contention that many of the errors in research on the frame problem arise

from a misunderstanding of the level of generality on which to approach the problem. Next,

we present a minimum list of requirements that every solution to the frame problem must

satisfy. We then examine several of the trends in solutions to the frame problem and show

where they fall short. We subsequently suggest a proper framework for research. Finally, we

examine the lessons that can be learned from the frame problem to AI research in general.

2 The Origins of the Frame Problem

The term frame problem was originally coined to describe a technical problem that arises in

a very narrow context. In the late 1950s, John McCarthy (1958) argued that common-sense

reasoning could be formalized within first-order logic; in the mid-1960s he developed the

situation calculus, an instance of first-order logic especially formulated for reasoning about

time (described in McCarthy and Hayes, 1969). For our purposes, the situation calculus,

a discrete branching timeline of situations connected by actions, can be summarized as

follows.

We think of a situation as being a snapshot of the world at a particular instant of time.

Consider, e.g., 1 p.m. EDT, July 17, 1992. In that situation, George Bush is president

of the United States, Bill Clinton is the presidential nominee of the Democratic party, it

is hot and muggy in New York City, and warm, dry, and sunny in Palo Alto. A state

is defined as a collection of situations. For example, the state of Richard Nixon being
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president is the collection of situations starting on January 20, 1969, and ending on August

9, 1974. The state On(BlockA, BlockB) is the collection of all situations in which Block

A is on top of Block B. A state is one type of fluent; intuitively, something whose value

changes over time. States are Boolean fluents; other fluents are time-varying terms. For

example, President(USA) is a fluent; it has the value George Bush in 1989, and has the

value Bill Clinton starting in January, 1993. The predicates Holds or True relate fluents

and situations. Thus we can say Holds(S77,On(BlockA,BlockB)).

Actions are defined as functions on states. For example, the action Puton(BlockA,

BlockB) maps those states in which Block A and Block B are clear (with nothing on top of

them) to those states in which Block A is on top of Block B. Result is a function mapping

the situation before the action has occurred to the situation after the action has occurred.

So, if we have the following statements in our theory:

Holds(S0, Clear(BlockA))

Holds(S0, Clear(BlockB))

we can talk about Result(Puton(BlockA, BlockB), S0).

The situation calculus gives us a way to talk about causation. To state that the Pu-

ton(BlockA, BlockB) action causes Block A to be on Block B, we say that in the situation

resulting from the Puton action, Block A is on Block B. That is:

Holds(Result(Puton(BlockA, BlockB), S0), On(BlockA, BlockB))

Thus far, everything is quite straightforward. But now, things become complicated.

Suppose we start out with the following facts:

Holds(S0, Red(BlockA))

Holds(S0, Clear(BlockA))

Holds(S0, Clear(BlockB))

Is it also true that Holds(Result(Puton(BlockA, BlockB), S0), Red(BlockA))?

That is, if Block A is red at the start, is it still red after we have put Block A on top of

Block B? This question certainly is not difficult for a human to answer: of course Block A is

still red. The problem is that this inference is not sanctioned by the theory. The theory as

it stands says nothing about how a block’s color is – or is not – affected by the occurrence

of actions.
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Thus, we have a problem: the problem of predicting – within the situation calculus –

how things stay the same as actions occur. Now, this is not the frame problem, although

researchers in AI have often identified this as the frame problem (see section 3). McCarthy

and Hayes (1969) never named this problem; they just offered a way of handling it: namely,

writing down axioms that specify how fluents do not change as actions occur. Such axioms

are called frame axioms. An example of a frame axiom is:

Holds(s, Red(b1)) ⇒ Holds(Result(Puton(b1,b2), s), Red(b1))

or more generally:

color(s,b1) = color(Result(Puton(b1,b2),s), b1)

Such an axiom would allow the desired inference: that Block A is still red after putting it

on Block B.

Of course, a tremendous number of things stay the same as Block A is moved to Block

B: the president of the United States stays the same, congressmen are still in office, the

Recommended Daily Allowance for zinc remains the same, and so on. To predict that all

these fluents will remain unchanged during block moving, we would have to add a very large

number of frame axioms to the theory. In general, if there are m actions and approximately

n fluents that remain unchanged for each action, approximately mn axioms are needed – a

vast number in any formalization of a reasonably complex world.

The need for such a large number of frame axioms in order to prove that most things

stay the same as actions are performed is known as the frame problem. There are several

reasons why the frame problem is, indeed, a problem. First, it is very time consuming

and tedious to write down all the axioms that one would need to write in order to prove

the desired facts. Second, such a system, bloated with obvious axioms, is inelegant. By

the same token, it is counterintuitive; it seems unlikely that we reason that Block A is

still red because we chain through a long list of axioms until we find one that says that

the color of a block before a Puton action is the same as the color after the Puton action.

Third, such a large number of axioms greatly slows down the system; the search for the

proper axiom becomes time consuming. Fourth, and perhaps most seriously, it has been

pointed out (McDermott, 1982) that frame axioms are often false, particularly in systems

that allow for concurrent actions. If someone spray paints Block A as the Puton occurs,
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its color will change. Concurrent actions were (implicitly) not allowed within McCarthy’s

situation calculus, 3 but the broader problem remains.

3 What the Frame Problem Really Is and What the Frame

Problem Was Taken to Be

In its most literal sense, the frame problem is the problem that arises from having a plethora

of axioms in order to reason that most features about the world remain unchanged as actions

occur. McCarthy and Hayes (1969), however, immediately identified the frame problem as

the problem of predicting within the situation calculus and without using frame axioms that

most things about the world remain the same as actions are performed. Very often, this

problem is viewed as a representational one: How can we say in a concise manner, “Except

for the features that are explicitly known to change, everything remains the same” ?

This is the classical frame problem. In fact, however, the frame problem has been re-

interpreted in a variety of ways, all of them more general than this original formulation.

We next present some of the major reinterpretations, going from the specific to the general.

On a slightly more general level, the frame problem has been identified with the persis-

tence problem (Shoham, 1988): the general problem of predicting the properties that remain

the same as actions are performed. Again, it is understood that this prediction takes place

without frame axioms – but the prediction can take place within any reasonable formalism

for reasoning about time – not just within the situation calculus. This may seem like a small

change, but as we shall see, it is a critical one. Many solutions to the old situation calculus

frame problem will not work for the more general persistence (or, as it is also known, the

extended prediction) problem.

Going upward in the generality scale, the frame problem has been understood as encom-

passing both the persistence problem and its dual – namely, the problem of determining

how things change over time. These two problems together are known as the (forward)

temporal projection problem (Morgenstern and Stein, 1988).

3Some extensions to the situation calculus, such as that of Gelfond, Lifschitz, and Rabinov (1991), do

allow concurrent actions, but they have not yet dealt with the frame problem.
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It is interesting to note how the two parts of the temporal projection problem differ.

The persistence problem is largely a representational problem: the idea is to predict that

properties remain the same without a plethora of axioms explicitly stating that things do

remain the same. In the case of predicting that things change over time, however, there is

no objection to causal axioms stating that an action causes a particular effect to take place.

On the other hand, there is a computational problem: figuring out everything that has

changed when an action is performed can be a very time-consuming task. This is especially

true if the world is very interconnected or if there are causal chains. For example, if I carry

my briefcase into my office, then everything in the briefcase will also be in my office. So

the result of my carrying action is not only that I and my briefcase are currently in my

office, but also that my pens, my yellow pad, and today’s New York Times are in my office.

Likewise (Ginsberg and Smith, 1988), if I put a newspaper on top of an air vent, then my

hand will be empty, and the newspaper will be lying on top of the vent. But in addition,

the room may become stuffy (if that is the only air vent) or the pages of the newspaper

may rustle (if the air flow is sufficiently powerful). The point here is that there are derived

or delayed effects that are tedious to infer. It is not that the placing of the newspaper on

the air vent directly causes the room to be stuffy. The placing of the newspaper causes the

newspaper to block the vent; the vent being blocked then causes the room to be stuffy. 4

This problem is known as the ramification problem (Finger, 1988).

On a still more general level, the frame problem has been identified with the general

problem of temporal reasoning. This includes forward temporal projection – reasoning

about persistence, reasoning about change, and the ramification problem, as well as the

backward temporal projection problem (Morgenstern and Stein, 1988): how can we reason

about what happened at an earlier time point if we are told what is true at a later time

4Of course, one could explicitly write out all these derived and indirect causes. Such a strategy, however,

is flawed for two reasons. First, it would be anti-intuitive: it is odd to say that the placing of the newspaper

on the vent causes the room to be stuffy. Moreover, it would turn this from a computational problem to a

representational problem, for we would then need a plethora of causal rules listing all the direct, indirect,

and derived effects of an action. These casual rules would often be difficult to write down. For example:

placing the newspaper on the air vent causes the room to be stuffy only if the air vent is the only source of

air in the room.
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point? Closely related to the problem of backward temporal projection is the problem of

explanation: if we predict that a certain fact will be true at time t and we are wrong, can

we explain what must have gone wrong previous to time t? It also includes the qualification

problem (McCarthy, 1986): roughly speaking, the problem of specifying what conditions

must be true in the world for a given action to have its intended effect. The classic example

here is the case of turning the ignition key. If you turn the ignition key in your car, you

expect the car to start. Actually, though, many conditions have to be true in order for this

statement to be true: The battery must be alive, the starter must work, there must be gas

in the tank, the tailpipe must be clear of obstacles, and so on. As with the original frame

problem, this is a representational problem with a computational sidekick. We certainly

would not wish to write down causal rules with cumbersomely long antecedents. Moreover,

even if we were to write down such causal rules, would we necessarily know enough to apply

them? I reason that I will be able to drive my car to work tomorrow morning, even though I

do not know for certain that the battery will be alive and that there will be no potato in the

tailpipe; in fact, I never explicitly consider these car parts. Finally, the problem includes

general questions on the nature of causation: What is a causal rule? Do we even know if

a causal rule is true? What is the connection between causation and material implication

(the standard “if-then” connective of classical logic)? and so on (Shoham, 1988).

Lastly, some philosophers have interpreted the frame problem to be a general problem

of reasoning. Fetzer (1991), for example, has argued that the frame problem is just an

instance of the general principle of induction: we realize that Block A will be blue after the

Puton action because that is the way it has been every other time we did the Puton action.

There are several points which must be made here. First, although the discussion above

lists various interpretations of the frame problem from the most specific to the most general,

the generalization takes place along more than one dimension. The move from the original

frame problem to the persistence problem represents a generalization along the dimension

of temporal ontology. The problem is the same, but it is examined within a broader theory

of temporal reasoning. The move from the persistence problem to the forward temporal

projection problem to the general problem of causal reasoning represents a generalization

of the aspect of temporal reasoning that is being examined. However, these generalizations
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did not occur only in the manner and order presented in this discussion. For example, some

researchers (e.g., Lifschitz, 1987) have closely combined a solution to the frame problem

with a solution to the qualification problem, although they have addressed these problems

only within the restrictive situation calculus.

Second, it can reasonably be argued that some of these generalizations – particularly the

generalization to the problem of induction – are improper, false, or beside the point. If the

frame problem can be generalized, as by Fetzer (1991), to the general problem of induction,

then so can many other reasoning problems. One could in the same manner generalize

probabilistic reasoning to the problem of induction: Of all the times that I have tossed a

coin, it has landed on its head half the time, so I figure that if I toss a coin now, it has a

50 percent chance of landing on its head. But it is rather bizarre to think of probabilistic

reasoning in this way. So too with the frame problem.

This brings us to the third point: What is the purpose of presenting these different

interpretations of the frame problem in increasing generality? It is the contention of this

chapter that many of the problems with solutions to the frame problem have occurred

precisely because they addressed the problem at the wrong level of generality. Solutions

that are too specific often miss the salient part of the frame problem – as discussed in

section 5. On the other hand, attempts at a solution to too broad a problem have typically

remained only attempts, not actual solutions, precisely because they are so difficult.

Just where should research be aimed? My present feeling is that it is wisest to identify

the frame problem as the persistence problem, but at the very least, one should work on

the general problem of forward temporal projection. We can state a very general dictum:

all other things being equal, the more general the solution, the better. But usually all other

things are not equal. Typically, solutions do not differ solely in their level of generality.

Moreover, if solutions A and B both solve the frame problem, and only solution B solves

the qualification problem, but A is a better solution than B, I would still argue that A

should be preferred. In any case, whatever the level of generality, a solution that is offered

at one level should not be inconsistent with our intuitions of a solution at a higher level.

The proper degree of generality is just one of the properties that a good solution to the

frame problem must have. The next section presents a list of such properties.
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4 Requirements for a Solution to the Frame Problem

It is easy to cavil about existing solutions to the frame problem and to find for each some

point(s) of objection. To be fair, however, we should approach each solution with a good

ides of what our minimum requirements of a solution are, and then analyze each solution

with respect to these requirements.

We list such requirements below. Because this is intended to serve as the minimum list,

it is probably not comprehensive.

[1] Achieving the right level of generality/specificity.

As discussed in the previous section, the frame problem has been viewed as a very broad

problem of induction, a very specific problem in temporal reasoning, or somewhere in be-

tween. Although we do not argue for a particular level of specificity, we do place the

following two constraints on generality/specificity:

a. The solution must go beyond overly restrictive temporal languages such as the situation

calculus. In particular, a solution should work for an expressive temporal reasoning

system that allows for concurrent actions, the representation of “gaps” (i.e., periods

where one does not have complete knowledge of all that is going on in the world) and

partial specification of actions (i.e., describing an action such as going down to Hertz,

renting a Ford, getting a map from the rental agency, and driving to Buffalo).

b. The solution should be compatible with a general theory of temporal reasoning. This

does not mean that the solution should necessarily solve the qualification or rami-

fication problem, or that it should give a convincing account of causation. But it

does mean that the solution should not preclude further work in causal reasoning.

For example, as discussed in Section 5.3.3, the works of Kautz(1986), Lifschitz(1986),

and Shoham (1988) are inconsistent with a theory that allows for backward temporal

reasoning. These solutions are thus not satisfactory for our purposes.

These constraints allow a wide range of solutions of varying degrees of generality. Within

this acceptable range, however, the following dictum applies: all other things being equal,

the more general the solution, the better.



in K. Ford & Z. Pylyshyn (eds): The Robot’s Dilemma Revisited: The Frame Problem in AI, Ablex, Norwood, 1996 15

[2] Staying faithful to intuitions.

Following one’s intuitions is in general a wise principle to follow when developing AI theories.

It is certainly true in the case of developing a solution to the frame problem.

This probably means incorporating some notion of causation into the theory. In partic-

ular, the theory should be based on the following principles:

a. The performance of an action causes certain things about the world to change.

b. Most other features about the world stay the same.

c. Principle b. is not an absolute rule. It is typically true but can sometimes be false. In

general, the more concurrency is allowed (i.e., the more things happen in the world at the

same time), the greater the likelihood that Principle b. will be false.

Ignoring one’s intuitions often means that problems with one’s solution crop up later.

Examples of this are described in section 5.

[3] Truth and soundness.

The axioms in one’s theory should be true. Approximations and/or misstatements may

be convenient, but a false theory will eventually lead to incorrect results. (Of course, all

theories are at best approximations of the real world, and thus may be considered false to

some extent. It is a question of threshold, and it is up to AI researchers to get this threshold

right.)

[4] Concreteness.

The theory should demonstrate actual solutions to some set of concrete benchmark prob-

lems. Solving concrete problems is essential; it forces us to be intellectually honest and to

work out things in detail. It points out all sorts of difficulties that did not exist at a higher

level of abstraction. Solving a concrete non-toy problem is usually tedious and sometimes

exceedingly hard. Thus, researchers who have examined concrete non-toy problems often do

so in very narrow domains. This may explain why there is an inverse relationship between

the generality of a problem and the concreteness of the solution. As a rule, researchers who

study the more general and all-encompassing problems in temporal reasoning do not offer

concrete solutions.

[5] Concise representation.

This means, specifically, no endless list of frame axioms or rules of persistence (a few general
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principles of persistence are okay). This may seem like an obvious criterion – we are, after

all, discussing a solution to the frame problem, which is the problem of having too many

frame axioms. In fact, it is not all that obvious, and it is not always satisfied. Some of

the theories that this chapter examines were developed as theories of (some aspects of)

temporal reasoning, and do deal with problems of persistence and causation. They may be

far superior to McCarthy and Hayes’s situation calculus in many respects, but still rely on

a large number of persistence rules to get the proper inferences. These may be quite good

theories of causal reasoning in some ways, but they are not solutions to the frame problem.

[6] Based on theory.

Some of the solutions that we examine here are procedural. Procedural solutions are fine, as

long as they are strictly based on some theory. This allows for formal and rigorous reasoning

about and comparison among these systems, and for analyses relative to the points above.

[7] Simplicity.

Like generality, this is a relative preference criterion. In general, all other things being equal,

the simpler and more elegant the solution, the better. Occam’s razor, in other words.

5 How Solutions Measure Up

The previous section listed some of the minimum requirements that any solution to the frame

problem should satisfy. Although these criteria seem rather simple, in practice virtually

none of the available solutions measure up against this list. This section presents some

major trends in research on the frame problem and analyzes the solutions in light of the

previous section.

This is not a comprehensive survey of all previous research on the frame problem.

Rather, we aim to identify the major types of solutions. We then wish to see in which

areas they fall short, what the underlying philosophical justifications are for these solutions,

and how it is possible to set research on the right course. Many classifications of solutions

are possible. We choose to identify and discuss the following trends: the monotonic, the

procedural, the nonmonotonic, and the probabilistic/statistical. Since the lion’s share of

recent research on the frame problem has been in nonmonotonic reasoning, the section on
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nonmonotonic solutions is the longest. It is divided into several sections: naive nonmo-

notonic temporal reasoning, forward reasoning approaches, causal approaches, progressive

approaches, and current trends.

5.1 Monotonic Approaches to the Frame Problem

Any solution to the temporal reasoning problem within monotonic logic must include some

frame axioms that specify how the world stays the same as actions are performed. The aim

of any monotonic solution to the frame problem is to somehow state the theory in such a

way that the number of frame axioms is kept at a reasonable level. Two classes of solutions

have been proposed.

One solution, framing primitive fluents by events (Davis, 1990), asserts within the logic

that only certain specified states and fluents are changed by an event, and that all others

remain the same. To accomplish this, one designates a few states and fluents as primitive;

the rest are derived. The frame axioms assert that only specified primitive fluents and states

change during the event; the rest remain the same.

The advantage of this representation is that we need only one axiom for each action type

(plus one axiom for each primitive state), resulting in a very manageable number of frame

axioms. However, Davis himself pointed out some of the disadvantages: First, concurrent

actions are not allowed in this representation. Second, the distinction between primitive

and derived states is artificial and conflicts with the spirit of the logicist approach.

The second approach, explanation closure, was suggested independently by Davis (1990)

and Schubert (1990). (Schubert generalized on a simpler version of an idea presented by

Haas,1987.) The idea is that the only way a fluent can change is if a certain (primitive)

event happens. Equivalently, if the event does not happen, the fluent remains unchanged.

For example, one could say that the color of a block remains unchanged unless a paint action

occurs. If one maintains a distinction between primitive and derived events, as Davis does,

this approach uses about the same number of axioms as the first approach. Otherwise,

one needs about 2 × F axioms, where F is the number of fluents. (Schubert calls these

axioms explanation closure axioms, because they give a complete explanation of how a

fluent changes.) Reiter (1991) suggests a modification of this approach which brings down
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the number of axioms to F + A, where A is the number of actions.

This approach uses a reasonable number of axioms and has the advantage of allowing

concurrent events. Nonetheless, there are two major disadvantages: First, while concurrent

actions are allowed if they are known, these systems cannot handle unknown concurrent

actions. One cannot reason correctly in a world in which not everything is known. That is,

the system’s knowledge about the events in the world must be complete. But this is hardly

a realistic assumption. Moreover, it is not needed in typical common-sense reasoning. I

reason that Block A will be blue after I move it even though I do not know everything else

that is happening. I reason that Rudy Giuliani is still mayor of New York when I wake up,

even though I do not know most of what has happened during the night.

Second, one must add very strong assumptions in order to make very straightforward

inferences in this system. For example, consider a simple blocks world theory with axioms

saying that blocks A, B, and C are on the table and are colored blue in situation S0, and

that Block B is placed on Block C, resulting in situation S1. To infer that Block B is still

blue in S1, or that Block A is still on the table in S1, one would have to add axioms that

either specify that no other actions happen or that severely restrict the types of action that

happen. It may be fine to conclude these facts using plausible inference (see section 5.3.5

for a description of MAT, which allows just this sort of plausible inference), but adding such

axioms to a monotonic logic is problematic. Such assumptions are typically not true in the

world (where many things may happen as Block B is being moved to Block C) and are not

needed by people who do common-sense reasoning.

Similar problems beset other attempts to solve the frame problem within a monotonic

logic. For example, Elkan’s (1992) logic cannot handle concurrent actions. Moreover, it

requires very strong assumptions in order to work.

5.2 Procedural Approaches

Procedural solutions to the frame problem have been around since the earliest days of the

frame problem. The best known of such approaches is STRIPS (Fikes and Nilsson, 1971).

STRIPS is first and foremost a planning program: Given an initial state, a goal state, and

a list of actions, it will plan a sequence of actions that achieves the goal state, using a
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planning method known as means-end reduction. In the course of planning, however, it

must reason about what changes and what stays the same after an action is performed. If

one starts out with blocks A, B, and C on the table, and one plans to build a tower with

A on top of B and B on top of C, a possible plan is performing Puton(B,C), followed by

Puton(A,B). But to reason that this plan is feasible, one must know that block A will still

be on the table after B is placed on C. If A has suddenly disappeared, the plan is no longer

feasible. Thus, STRIPS must deal with the frame problem.

STRIPS solves the frame problem by assuming that if an action is not specifically

known to change some feature of the world, it does not. This principle is easy to represent

procedurally (thus the popularity of procedural solutions to the frame problem). STRIPS

works as follows:

Each state is represented as a set of statements, describing the world at a particular

time. For example, the initial state might be:

{ clear(A), on(A, Table), clear(B), on(B, Table), clear(C), on(C, Table) }

and the goal state might be:

{ on(A,B), on(B,C) }

Associated with each action is a list of preconditions that must be satisfied in order for

the action to be performed, along with an add list and a delete list. The add list is the set

of statements that gets added to the current state after an action is performed, and the

delete list is the set of statements that gets deleted from the current state after the action is

performed. For example, Puton(x,y) could have the associated precondition list: { on(x,z),

clear(x), clear(y) } , add list: { on(x,y) } , and delete list: { clear(y), on(x,z) } .

Let s0 be the current situation and let S0 be the set of statements representing that

situation. Then, if s1 = result(act,s0), S1 = S0∪ addlist(act) − deletelist(act)) .

The advantages of STRIPS are clear: it is computationally efficient and easy to un-

derstand. Proponents argue that STRIPS reflects the common-sense reasoning that people

do: after all, we usually just figure out what has changed and ignore the rest. However,

there are severe disadvantages to STRIPS. By its very nature, it cannot handle conditional

actions (Pednault, 1991; Penberthy, 1993). More importantly, STRIPS works only for lim-

ited temporal ontologies. In particular, it will not work if unknown concurrent actions are
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allowed. This is because the assumption underlying STRIPS – “if it isn’t explicitly declared

to change, it doesn’t change” – is simply false in a world in which unknown concurrent ac-

tions are allowed. If someone grabs A at the same time as I move B to C, Block A will not

be on the table at the end of my action! STRIPS is incapable of representing or reasoning

about such a scenario. STRIPS thus violates criterion [1] of our minimum requirements

cited earlier.

STRIPS fails for the same reason that frame axioms fail: because they are false, partic-

ularly in any world that allows for concurrent actions. The fact is that while most features

about the world usually do not change during an action, some do. It is true that moving a

block does not change the president of the United States, but if I move a block while a new

president takes the oath of office, the president after my action will not be the same as the

president before my action. The world’s population is changing every minute, so the world’s

population after an action will always be different than the world’s population before the

action, even though the action is not causing the population of the world to change.

The point, then, is to somehow capture the fact that most features usually do not

change as actions are performed. Vague words like usually and most are difficult to capture

within classical logics. Thus many researchers have looked elsewhere – in particular to

nonmonotonic and probabilistic logics.

5.3 Nonmonotonic Approaches

5.3.1 Origin of Nonmonotonic Approaches

In section 3, we argued that the classical frame problem can be viewed as the problem of

saying in a concise, formal manner, “Except for the features that are explicitly known to

change, everything remains the same.” That is, we would like to achieve the following in

some formal system: Assume that a feature remains the same after an action is performed,

unless it is explicitly known to change.

This sort of statement cannot be formalized in a standard, classical logic. In such logics,

one cannot explicitly talk about assumptions, exceptions, or what usually happens. Since

such concepts are prevalent in common-sense reasoning, AI researchers began in the 1960s

and 1970s to develop logics that could handle such concepts. The result of this research
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was the development of a family of logics known as nonmonotonic logics. These logics are

designed to formally capture concepts such as usually, typically, and most. The canonical

example, solved by all nonmonotonic logics, is that of Tweety the bird. Given (only) the

assumptions that birds typically fly and that Tweety is a bird, a nonmonotonic logic will

support the conclusion that Tweety flies.

These logics are called nonmonotonic in contrast to classical logics, where the set of

conclusions is monotonic with respect to the set of assumptions: the more assumptions you

have, the more conclusions you can draw. In nonmonotonic logics, you may have to retract

a conclusion as new assumptions are added. For example, if you add to the above set of

assumptions the fact that Tweety is an ostrich, and you know that ostriches do not fly, you

must retract the conclusion that Tweety can fly.

There are various forms of nonmonotonic logic; one of the best known of these is Circum-

scription (McCarthy, 1980). The idea behind Circumscription is to restrict the extension

of a predicate (or set of predicates) as much as possible; that is, to limit the entities that

satisfy a certain property. For example, we might represent the statement “birds typically

fly” as “birds fly unless they are abnormal in some respect” :

∀ x bird(x) ∧¬ ab(x) ⇒ fly(x)

We would then wish to restrict the class of abnormal birds as much as possible. Penguins

and ostriches and birds with broken wings would be abnormal birds, but if a bird could not

be shown to be abnormal, one would conclude that it was not abnormal, and thus, could

fly.

McCarthy proposed that this idea could be extended to temporal reasoning. Specifically,

he suggested that one could formulate the principle of inertia – i.e., that most things do not

change – by adding the following axiom to one’s theory:

∀ f,e,s Holds(f,s) ∧¬ ab(f,e,s) ⇒ Holds(f,Result(e,s)). 5

That is, if a fluent holds in a particular situation, and an event occurs that is not abnormal

with respect to this fluent in this situation, then the fluent will still be true in the situation

5I am stating here Hanks’ and McDermott’s (1986) restatement of McCarthy’s approach. McCarthy had

one statement of inertia for each fluent. The generalization to one principle of inertia is straightforward.

Note also the reversal of the fluent and situation arguments in the Holds predicate; both notations are

common in AI.
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resulting from performing that event.

For example, consider the action Move(A,B). The Move action is not abnormal with

respect to the president of the United States, the color of my carpet, and the color of blocks

A and B. It is abnormal, however, with respect to the location of blocks A and B. Thus, if

Block A is blue before A is moved onto B, it will be blue afterwards. Likewise, if Bush is

president before the block is moved, he will be president afterwards. On the other hand,

the location of Block A will have changed.

Has McCarthy, in fact, solved the frame problem? As discussed in the next section,

McCarthy’s solution has a major flaw – it succumbs to the Yale Shooting Problem, a

special case of the multiple extension problem. Moreover, I contend that even if it were

not for this flaw, McCarthy’s solution would still not be an adequate solution to the frame

problem. McCarthy’s solution is so strongly based on the situation calculus that it cannot

be extended to a more expressive temporal ontology. In particular, it cannot be extended

to any temporal ontology rich enough to handle concurrency. For if we closely examine the

principle of inertia described earlier, we see that it is false if (unknown) concurrent actions

are allowed. The principle of inertia says that the Move action is not abnormal with respect

to the color of the blocks – but what if someone spray paints Block A at the same time

as someone else moves it? Or suppose that the Move action takes place at the moment

that Bill Clinton is sworn into office. The Move action is not abnormal with respect to the

presidency – yet Bush is president in the situation before the Move action, and Clinton is

president in the situation resulting from the Move action. The principle that McCarthy has

formalized is false, precisely because concurrent actions are not taken into account. 6

Thus, McCarthy’s solution fails in two respects:

(1) It succumbs to the Yale Shooting Problem (to be discussed at length in the next section).

(2) It does not work for concurrent actions.

As we shall see in the next section, much has been made of problem (1), and much energy

has been expended in fixing it. But virtually all of these solutions ignore problem (2), and

thus are still inadequate as solutions to the frame problem. Ironically, what problem (1) –

the Yale Shooting Problem – has achieved has been to divert the focus of research on the

6Note that this flaw also troubles the STRIPS procedural solution to the frame problem (section 5.2).
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frame problem from the honest analysis of the advantages and disadvantages of a particular

approach to the plugging of a hole in a solution that is not very good to start with.

5.3.2 The Yale Shooting Problem

McCarthy’s solution was for a short time believed to have successfully solved the frame

problem. In 1986, however, Hanks and McDermott showed that McCarthy’s solution suc-

cumbs to a serious problem, popularly known as the Yale Shooting Problem. The Yale

Shooting Problem can itself be seen as an instance of the multiple extension problem –

whose existence has been know since the inception of nonmonotonic logics.

The multiple extension problem is, briefly, the problem that arises when two default

rules conflict. The canonical example is the Nixon-Quaker-Republican diamond (Reiter and

Criscuolo, 1981): It is well-known that Quakers are usually pacifists and that Republicans

are usually nonpacifists. Suppose we also know that Nixon was a Quaker and that he was

a Republican. Was Nixon a pacifist or a nonpacifist? There is support for both positions,

so it is difficult to conclude anything about Nixon’s beliefs. This is the multiple extension

problem (more than one model, or extension, is supported by the facts); but indeed, it

originally was seen as a feature of nonmonotonic logics. The multiple extension problem

showed that one could represent conflicting information within a nonmonotonic theory. In

fact, such conflicts often occur in common-sense reasoning. We often have conflicting default

information with regard to a particular subject. Sometimes we can weigh the conflicting

information and come to a decision, and sometimes we cannot. This is all consistent with

common-sense reasoning.

In the Nixon diamond, it is not clear that we would want to make a decision vis-à-

vis Nixon’s pacifism given only the above information. So the fact that we have multiple

extensions is not in itself an anomaly. The problem arises in situations where we do have a

definite intuition about what conclusion a set of axioms should support. This is the case of

the Yale Shooting Problem.

The Yale Shooting Problem was discovered when Hanks and McDermott (1986) at-

tempted to integrate temporal and nonmonotonic logics. It can be briefly described as

follows: We are told that a gun is loaded at time 1, and that the gun is fired at Fred at
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time 5. Loading a gun causes the gun to be loaded, and firing a loaded gun at an individual

causes the person to be dead. In addition, the fluents alive and loaded persist as long as

possible; that is, these fluents stay true unless an action that is abnormal with respect to

these fluents occurs. Thus, a person who is alive tends to remain alive, and a gun that is

loaded tends to remain loaded. What can we conclude about Fred’s status at time 6? If we

work within the situation calculus and we assume that the starting situation is S0, we can

phrase the following question: Is

Holds(Alive(Fred), Result(Shoot, Result(Wait, Result(Wait, Result (Wait, Result(Load, S0))))))

true? 7 Although common sense argues that Fred is dead at time 6, the facts support two

models. In one model (the expected model), the fluent loaded persists as long as possible.

Therefore, the gun remains loaded until it is fired at Fred, and Fred dies. In this model, at

time 5, shooting is abnormal with respect to Fred’s being alive. In the other, unexpected

model, the fluent alive persists as long as possible (i.e., Fred is alive after the shooting).

Therefore, the fluent loaded did not persist; somehow the gun must have become unloaded.

That is, in some situation between 2 and 5, Wait was abnormal with respect to the gun

being loaded.

Here, the existence of multiple extensions is a genuine problem. If, given the simple set

of assumptions above, one cannot even conclude that the gun stays loaded and that Fred is

dead, in what sense can we say that McCarthy has solved the frame problem? Hanks and

McDermott in fact argued that the existence of the Yale Shooting Problem underscored the

inadequacy of logicist temporal reasoning. Other researchers viewed the YSP as just one

more challenge to be solved.

Although many solutions have been proposed to the Yale Shooting Problem, they can

be grouped into a few broad categories. The two best known of these are the chronological

and causal-based approaches. We discuss these, as well as an alternate approach, below.

Our interest in examining these approaches is exclusively to determine whether they are

adequate solutions to the frame problem.

7The Yale Shooting Problem was originally formulated within the situation calculus. Most of the proposed

solutions to the Yale Shooting Problem have been given within the situation calculus, a fact that we believe

helps explain the lack of progress in research on the frame problem. But the YSP is not unique to the

situation calculus and can exist in any temporal formalism (McDermott, personal communication, 1988).
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5.3.3 Chronological Approaches to the Yale Shooting Problem

The first solutions to the Yale Shooting Problem (Kautz, 1986; Lifschitz, 1986; Shoham,

1988) work by imposing a forward-in-time order on reasoning. They are thus known as

the chronological approaches. In the expected model, one reasons from the earliest to the

latest time point; in the unexpected model, one reasons from the latest time point (after

the shooting) to earlier times. Thus, the unexpected models are disqualified, and we can

conclude that Fred is dead after the shooting.

Although these solutions do work for the Yale Shooting Problem, it is clear that they

do not solve the frame problem. First, the strong constraint on forward-in-time reasoning

works well when one is considering problems of prediction (i.e., will Fred be dead after the

gun is fired?), but does not work when one is considering problems of belief revision or

explanation. In such cases, backward-in-time reasoning is necessary. For example (Kautz,

1986), suppose there is a default rule that states that a car will typically stay where it is

parked. If I park my car in a lot at 9:00 a.m., I will predict that the car will be there when

I return at 5:00 p.m. But if I return to find the car gone, forward-in-time reasoning will

entail that the car disappeared from the lot at the last minute – just before 5:00 p.m. ! This

is clearly not a reasonable conclusion. Chronological approaches are thus inadequate for

the general problem of temporal projection. Second, Lifschitz’s and Kautz’s solutions are

firmly based on the situation calculus, and thus inherit all the problems that the situation

calculus entailed for McCarthy’s original solution.

5.3.4 Causal-based Approaches

Chronological approaches, popular for a short time after the publication of the Yale Shooting

Problem, quickly lost favor – due for the most part to the fact that they are incapable of

handling backward temporal reasoning. The next wave of proposed solutions, which we

refer to as causal-based solutions (Lifschitz, 1987; Haugh, 1987; Baker, 1991), differed from

the chronological approaches in two major respects: (a) there is an explicit attempt to make

sure that these solutions work for both forward and backward reasoning and (b) there is an

explicit attempt to base the solutions to the Yale Shooting Problem on a strong intuition

about temporal reasoning.
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The principle behind the chronological approach – that changes should happen as late

as possible – seemed to work, at least at first glance. But this principle does not seem

intuitive, or even true, and it does not seem to have anything to do with our understanding

of why the gun should remain loaded and Fred should die. The causal-based approach

argues that we expect Fred to die because there is an action that causes Fred’s death, but

there is no action that causes the gun to become unloaded. All the causal-based approaches

formalize this principle in some way. Below we examine Lifschitz’s (1987) approach (which

also solves the qualification problem).

Lifschitz defines a predicate affect(a,f,s) where an action a affects a fluent f in some

situation s if the action is successful and causes the fluent to take on a particular truth

value (all variables are assumed to be universally quantified unless otherwise noted):

affects(a,f,s) ⇔ success(a,s) ∧∃v causes(a,f,v)

An action a is successful in a situation s if all of its preconditions hold in that situation:

success(a,s) ⇔ ∀f (precond(f,a) ⇒ holds(f,s))

There is also an axiom describing how fluents change:

success(a,s) ∧ causes(a,f,v) ⇒ (holds(f,result(a,s)) ⇔ v = true)

The idea then is to minimize the predicates precond and causes. Minimizing precond

solves the qualification problem (i.e., the only qualifications to an action are those which are

explicitly stated or which can be derived); minimizing causes, claimed Lifschitz, solves the

frame problem. This theory correctly handles the Yale Shooting Problem. Since there is no

axiom that says that the Wait action causes the gun to become unloaded, the minimization

of causes will entail that the gun cannot become unloaded in the Yale Shooting Scenario.

A solution similar to Lifschitz’s was independently suggested by Haugh (1987). More-

over, researchers have suggested several modifications of Lifschitz’s solution (Lifschitz and

Rabinov, 1989; Baker, 1991) to correct some of the anomalies in Lifschitz’s original solution.

Much has been made of the anomalies, which we briefly discuss here, but as in the case of

the Yale Shooting Problem in general, we believe that the emphasis on the anomalies has

blinded most of the AI community to the real deficits of this entire approach. Shortly after

Lifschitz proposed his approach, it was discovered that although his theory could handle

backward reasoning, it did so a little strangely. For example, if one finds out at time 6 that
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Fred is alive, the theory would entail that the action Wait always causes the gun to become

unloaded. This would mean that the Yale Shooting Scenario would never work; the moment

someone would wait between a loading and a shooting, the gun would become unloaded.

Lifschitz and Rabinov modified the theory to include the existence of one-time “miracles”

so that in cases of unexpected occurrences one can assume that a “miracle” happened.

Thus, if one finds out at time 6 that Fred is alive, one can assume that a miracle must have

unloaded the gun, rather than permanently alter one’s causal theory. Baker (1989) noted

that Lifschitz’s theory did not work correctly for some temporal reasoning involving a com-

bination of forward and backward reasoning (most notably the Stanford Murder Mystery,

also discussed in Baker, 1991), and suggested ways of modifying Lifschitz’s theory so that

these problems could be handled.

The discovery of various holes in Lifschitz’s theory, the attempts to plug these holes,

and the subsequent discovery of still more problems have led many (e.g, (Elkan, 1992)) to

argue that these solutions to the Yale Shooting Problem cannot serve as solutions to the

more general problem of temporal reasoning; in particular, that these solutions work only

for the few toy problems for which they are developed.

We agree with this conclusion: that the causal-based approach has not yielded a satis-

factory solution – but not only because each new iteration of the approach seems to fall prey

to some new twiddle on the Yale Shooting Problem. More importantly, the causal-based

approach fails in two important respects: First, it does not work for concurrent or unknown

actions. Second, it is not consistent with our intuitions.

The causal-based approach does not work for systems allowing concurrent or unknown

actions because it is based on the situation calculus. In particular, it relies on the very

strong assumptions of the situation calculus – that only one action happens at a time and

that all actions are known. (This is beginning to sound like a refrain of this chapter – and

indeed it is. Given that concurrent and unknown actions are so commonplace in common-

sense reasoning, it is amazing how few theories of temporal reasoning have ever considered

systems that allow for such actions.) If we add the axiom causes(unload,load,false) to the

Yale Shooting Problem, and allow for concurrent actions, the conclusion that Fred is dead

at time 6 no longer follows. For indeed, there is a model in which an Unload action happens
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at the same time as the Wait action, the gun is unloaded when the Shoot takes place, and

Fred remains alive. The sole reason that the causal-based approach works for the Yale

Shooting Problem is that no other actions are allowed to happen during the Wait action.

Now, this realization may be somewhat hard to take. Wasn’t the point of the causal-

based approach to formalize a very intuitive principle of temporal reasoning – that there are

no unexpected causes? Shouldn’t this principle be enough to ensure that a surprise Unload

action doesn’t happen – without resorting to a complete ban on concurrent actions? And

if not, what has the causal-based approach bought for us anyway?

The answers to these questions are, respectively: so we thought, not really, and it bought

us something, but not all that we expected. The frame problem was originally discovered in

the very restrictive situation calculus. Even in a system in which concurrent actions were

not allowed, it was very difficult to infer that a red block was still red after a move occurred.

To make such an inference within a standard, monotonic logic, frame axioms were needed.

Frame axioms were the only way to ensure that actions did not have strange effects (i.e.,

that a Move action did not cause a red block to turn blue) or that fluents did not change

values by themselves. What Lifschitz’s theory (and those of his successors) achieved was to

allow the correct inferences without relying on frame axioms. These theories do concisely

formalize the principle: A fluent will change only if there is some known cause.

However, that is about all these theories do. They do not, in and of themselves, preclude

unexpected actions (such as the unloading of a gun) from happening. It is the restrictive

situation calculus that does that. Take any of these theories away from the framework

of the situation calculus, and they crumble entirely. Thus, these theories do not provide

satisfactory solutions to the frame problem.

5.3.5 A Progressive Approach

Interestingly, the causal-based approaches described above do not even provide intuitively

satisfying solutions to the original Yale Shooting Problem. For our intuition that Fred is

dead at time 6 is not predicated on the strict situation calculus assumption that concurrent

actions are not allowed. The natural reading of the story – a gun is loaded at time 1, and

the gun is fired at Fred at time 5 – allows anything to happen during the passage of time.
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The point is that there is no reason for an Unload to occur. Thus, we do not expect it,

and models in which an Unload does occur are less preferable than models in which the gun

stays loaded.

The moral behind the Yale Shooting Problem seems to be that we prefer models in

which unexpected actions do not happen. The formalization of this principle has led to

a third approach to solving the Yale Shooting Problem, outlined below and described in

(Morgenstern and Stein, 1988; Stein and Morgenstern, 1994). Unlike most previous solu-

tions to the Yale Shooting Problem, Motivated Action Theory (MAT) was not based on the

situation calculus. Instead, it was based on a simple, interval-based theory of time, taken

from McDermott (1982). Concurrent actions were allowed, as were unknown actions and

gaps.

A description of a problem scenario in MAT is known as a theory instantiation, consist-

ing of a theory T and a (partial) chronicle description CD . Intuitively, T gives the rules

governing the world’s behavior and contains causal rules and persistence rules. Causal rules

describe how actions change the world; persistence rules describe how fluents remain the

same over time. CD describes some of the facts that are true and the actions that occur

during a particular interval of time.

Central to MAT is the concept of motivation. Intuitively, an action is motivated with

respect to a theory instantiation if there is a “reason” for it to happen. The most important

types of motivation are strong and weak motivation. An action is strongly motivated if it

“has to happen” in all models (i.e., it is a theorem that the action happens). It is weakly

motivated if it “has to happen” with respect to a particular model (i.e., if it must occur given

the particular way the model is set up). Formally, a statement γ (saying that some action

has occurred) is weakly motivated in a model if there is a sentence of the form α ∧ β ⇒ γ

in the theory; α is motivated in the model, and β is true in the model. Thus, the effects

of causal chains are weakly motivated. A model is preferred if it has as few unmotivated

actions as possible. This allows for a very nice solution to the Yale Shooting Problem. In

the expected model, where the gun remains loaded and Fred dies, there are no unmotivated

actions. In the unexpected model, there is an unmotivated action – the Unload action.
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Thus we prefer the expected models over the unexpected models. 8

MAT has many advantages over earlier theories of temporal reasoning. It allows for

forward and backward temporal reasoning, supports a flexible temporal ontology, is based

on sound intuitions, and has been demonstrated to work on a large set of concrete benchmark

problems. Despite all these advantages, however, it has been argued that it too falls short

as a solution to the frame problem. For central to MAT’s success are its persistence rules

– which are just another form of frame axioms.

There are two responses to this objection. First, we do not have a plethora of persistence

rules; we merely need one persistence rule for each fluent type. In fact, MAT uses no more

persistence rules than Davis’s solution of framing primitive events by fluents, with none of

that solution’s disadvantages. However, it might be argued that even this many persistence

rules are too much, and that MAT has not provided a total solution to the frame problem.

Note that while Lifschitz and his successors’ theories use nonmonotonic logic to obviate

the need for frame axioms and to show that the actions that occur have no unexpected

effects, MAT uses nonmonotonic logic so that we can infer that no unexpected actions have

happened. Both theories attack different aspects of the temporal reasoning problem, but

no solution by itself is a fully adequate solution to the general frame problem. No theory

satisfies all the criteria outlined in Section 4.

Since we have two solutions which solve different aspects of the frame problem, a natural

question arises: Can these solutions be integrated? If so, does the resulting theory solve

the frame problem?

It is difficult to add MAT to Lifschitz’s theory since Lifschitz’s theory is so strongly

based on the situation calculus. However, one can add the basic idea behind Lifschitz’s

theory – minimizing the predicate causes – to MAT. This approach is briefly discussed in

(Stein and Morgenstern, 1994), where we suggest performing two stages of minimization:

first circumscribing the causes predicate, and then using MAT’s model preference criterion

on the resulting set of models.

Indeed, there has recently been a trend toward integrating existing solutions into new

8Note that minimizing unmotivated actions is not the same as minimizing action occurrences, particularly

in cases where we have causal chains of action.
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general purpose theories of temporal reasoning. We turn our attention to this approach

next.

5.3.6 Current Trends: Integration into General Temporal Theories

The first wave of euphoria, or at least relief, following the first set of solutions proposed to

the Yale Shooting Problem quickly ebbed as these solutions were shown to be inadequate for

slight modifications to the YSP. As the cycle continued – new solutions were suggested and

counterexamples discovered for these solutions – dissatisfaction with this ad hoc method of

research grew.

Researchers have responded in two ways. On the one hand, they have attempted to lay

out a set of benchmark problems that would touch on all the “hard” problems of temporal

reasoning (Lifschitz, 1988; Sandewall, 1994, chap. 7). At the same time, however, they have

tried to distance themselves from individual benchmark problems. Instead of constructing

a theory and demonstrating that this theory could solve a set of particular problems, they

have proven general properties of such theories. Thus, researchers have attempted to show

that a temporal theory solves a certain class of temporal reasoning problems. The fact

that this theory solves a particular benchmark problem is then a consequence of the more

general theorem that has been proven.

Early examples of such work can be found in (Lin and Shoham, 1991; Lifschitz, 1991).

Lin and Shoham focused on constructing theories which have a property that they label epis-

temological completeness. This property entails that if one is given a complete description of

the initial situation, including the actions performed in that situation, one can completely

predict the situation resulting from the performance of the actions. Thus, if a theory can be

shown to be epistemologically complete, it can at least handle forward temporal projection.

In a similar but broader spirit, Lifschitz constructed a general theory of action which

embedded Baker’s (1989) approach to temporal reasoning. Lifschitz’s main innovation lay

in the fact that he proved that his theory would correctly handle temporal projection and

ramification for a restricted class of temporal reasoning problems. Moreover, by embedding

an existing theory into a more general theory of temporal reasoning, Lifschitz sparked

another important and welcome trend: integrating and building upon existing theories,
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rather than starting each new temporal theory from scratch. Both these trends are evident

in the work of Kartha (1993) as well.

The most ambitious of these projects to date has been that of Sandewall (1994), who

has set out to assess virtually all major nonmonotonic temporal formalisms within a single

unifying framework. Sandewall has painstakingly defined a taxonomy of temporal reasoning

languages and has made explicit the characteristics – such as non-determinism, ramifica-

tions, and concurrency – that apply to, or are part of, each language. 9 He has also made

explicit the many epistemological assumptions underlying benchmark problems and theories

of temporal reasoning. Finally, he has mapped various theories of nonmonotonic temporal

reasoning into his framework, and he has proven general results about these theories. For

example, Sandewall has shown that Kautz’s (1986) approach to nonmonotonic temporal

reasoning (a type of chronological minimization) works correctly for the class of languages

with the characteristics of inertia and strongly deterministic equidurational change, as long

as certain epistemological properties hold: namely, the initial situation is completely known,

and nothing is known about any subsequent situation.

To what extent have the current trends contributed toward a solution to the frame prob-

lem? Certainly they have injected a fresh spirit of enthusiasm into the research community.

In many respects, however, they have fallen short of their promise. It is no doubt preferable

to prove that a theory of temporal reasoning works correctly for a class of problems than

to show that it works for specific benchmark problems. But ultimately such results are of

interest only if they apply to broad and useful classes of problems. Unfortunately, in this

respect, the results that have thus far been demonstrated are disappointing, for they apply

only to very narrow sets of problems. For example, Lin and Shoham’s (1991) epistemologi-

cally correct theories deal only with scenarios in which everything is known about the initial

situation; thus they cannot handle problems like the Stanford Murder Mystery. Their the-

ory was extended to deal with concurrent actions (Lin and Shoham, 1992), but only known

concurrent actions are considered; moreover, the epistemological assumptions remain very

9A characteristic typically applies to or is part of a language if that language is expressive enough to

describe the characteristic or contains instances of that characteristic. For example, ramifications are part

of a temporal language if there are some causal laws that allow for indirect effects.
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strong. Lifschitz and Kartha likewise assume that all actions are known (although they

at least allow for the possibility that not all fluents are known in the initial situation); in

addition, concurrent actions are not considered.

In contrast, Sandewall explicitly discusses broader classes of theories in which non-

determinacy, ramifications, and concurrency are allowed, and which have very weak epis-

temological assumptions. At this point, however, Sandewall’s results are limited to narrow

classes of theories; it is assumed that all actions are known, and concurrent acts and rami-

fications are not considered. Thus, none of his results as yet represent an adequate solution

to the frame problem. Sandewall plans to address broader classes of theories in the sequel

to his 1994 work. Correctness results for a sufficiently broad class of theories would repre-

sent genuine progress toward solving the frame problem within a nonmonotonic temporal

formalism. At the very least, Sandewall has made explicit the many assumptions underly-

ing existing theories of temporal reasoning and has thus helped set the agenda for future

research.

5.4 Statistical and Probabilistic Theories

While probabilistic and statistical research are an established part of AI research, relatively

little work has been done on probabilistic and statistical approaches to temporal reasoning.

Two notable works in this area are the probabilistic approach of Pearl (1988, Section 10.4)

and the statistical approach of Tennenberg (1991). Both theories are especially formulated

to solve the Yale Shooting Problem. Pearl starts off with the YSP in a default logic;

there are persistence rules such as Loaded(t0) ⇒ Loaded(t1) and Alive(t0) ⇒ Alive(t1), and

causal rules such as Alive(t1) ∧ Shoot(t1) ∧ Loaded(t1) ⇒ ¬ Alive(t2). These rules are

given probabilistic interpretations. Thus, we have:

P(Loaded(t1) | Loaded(t0)) = High = 1 - ε

P(Alive(t2) | Alive(t1)) = High

P(Alive(t2) | Alive(t1), Shoot(t1), Load(t1)) = Low

Given basic rules of probability theory and some common-sense assumptions on how

these probabilities interact, the theory predicts that P(Alive(t2) | Load(t0), Alive(t0),

Shoot(t1)) = Low – that is, the theory predicts that Fred will be dead after the shoot-
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ing.

Tennenberg’s theory is based on Kyburg’s (1974,1983) theory of statistical epistemology,

which argues that agents possess statistical knowledge in their belief bases. For example,

10 an agent might have the statement P(mug-in-lounge(t1) | mug-in-lounge(t2)) ∈ ( 0.9,

0.95 ) in his belief base. An agent reasoning about the Yale Shooting Problem might have

statements like:

P(Loaded(t1) | Loaded (t0)) ∈ ( 0.9, 0.95 )

P(Alive(t1) | Alive(t0)) ∈ ( 0.99, 1.0 )

P(Alive(t1) | Shoot(t0) ∧ Alive(t0) ∧ (Loaded(t0)) ∈ (0.1, 0.3 )

Note that the last two statements are an example of competing reference classes. In

general, the most specific reference class applicable is used. Tennenberg then suggests ways

of extending this approach so that it can handle the Yale Shooting Problem.

The clear advantage of statistical and probabilistic approaches over nonmonotonic ap-

proaches is that they are strongly grounded in classical mathematics. But such approaches

fall far short of satisfying the list of requirements outlined in Section 4. Tennenberg’s

approach is highly unintuitive; it is difficult to believe that people assign numerical proba-

bilities to statements. People typically reason with statements like, “The mug will probably

be in the lounge in an hour” or “People usually stay alive from one moment to the next.”

They do not reason with statements such as, “The probability that my mug will be in the

lounge in the next hour is between 90 and 95 percent.”

Moreover, compiling such a set of statistics seems very difficult. Tennenberg suggests

that we learn them informally from observation. Clearly, however, there is much more than

observation going on. The ability to reason inductively and analogically is also required. If

we know that in 100 previous instances a mug stayed in the room where it was placed, I

can reason by induction that when I now place my mug in the lounge, it will remain there.

I can presumably reason by analogy and infer that this will also apply to a bowl that is

placed in the room. However, I cannot make this same inference about a cat that is placed

in the room. 11 Tennenberg’s approach also suffers from vagueness; he does not work out

10I am using the notation of probabilistic logic here to simplify the exposition.
11Interestingly, Tennenberg noted, while discussing frame axioms, that one can say with much more



in K. Ford & Z. Pylyshyn (eds): The Robot’s Dilemma Revisited: The Frame Problem in AI, Ablex, Norwood, 1996 35

any of his problems in detailed, concrete terms.

Pearl’s approach does not suffer from these defects. The probabilities are derived from

the default rules of the theory, so there is no more difficulty in encoding the probabilities than

there is in writing down the default theory. Moreover, he assigns vague probabilities like

High or Low: intuitively, just the sort that we expect humans to be comfortable reasoning

with. The Yale Shooting Problem, at least, is worked out in detail, although none of the

other problems in the YSP family are. (Pearl himself notes that his causal rules entail some

form of forward reasoning, so it would certainly be wise to ensure that his solution also

works for backward temporal projection and explanation.)

Nonetheless, both Tennenberg’s and Pearl’s approaches fail as solutions to the frame

problem in one important respect: they both rely heavily on frame axioms. In each case,

a full set of persistence rules is needed. Thus, their approaches do not solve the frame

problem at all. 12

6 Conclusion

Previous solutions to the frame problem have been flawed, mostly because they have at-

tacked too specific or too general a version of the problem. The single largest contributing

factor to the misdirected research has been the centrality of the situation calculus to the

research on the frame problem. The lion’s share of solutions has directly relied on the

very strong assumptions of the situation calculus – most notably, the assumptions that

concurrent actions cannot occur or that all actions are known – that are out of place in

common-sense reasoning. Such solutions are brittle; they collapse as soon as concurrent

actions are permitted or unknown actions are possible. This observation underscores the

danger of relying too heavily on toy problems in one’s research.

Another large segment of research, most notably the monotonic solutions, MAT, and the

confidence that a pair of shorts will remain in some location than that a $100 bill will remain in some

location. But he does not seem to realize that a similar problem applies to learning statistical knowledge

through observation.
12Tennenberg argues that his statistical rules are not as bad as frame axioms because one can make up

rules that apply to classes of objects, thus reducing the number of frame axioms. Of course, the same

argument can be made for standard frame axioms.
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statistical and probabilistic approaches, fail to completely solve the frame problem because

they lost sight of what the frame problem is all about – that is, getting rid of the frame

axioms. This observation underscores the necessity of clearly defining a problem and stating

what the necessary criteria for a solution are.

Despite the fact that solutions to the frame problem have all failed in at least one respect,

there exist solutions that are at least partly successful. Very often, these solutions are so

brittle that they cannot be extended. However, there is some potential for integrating

various solutions. In particular, it is possible to augment MAT – a theory of temporal

reasoning that did not solve the frame problem because it relied on explicit frame axioms –

with the idea behind Lifschitz’s theory of causal reasoning. The resulting integrated theory

may very well offer a solution to the frame problem.

More important than the question of whether or not one particular theory is a solution to

the frame problem is the lesson to be learned: that new research must build upon previous

research, and that integration of existing theories is important. Too little of that goes on

in AI logicist research today. The trend is to poke holes in someone else’s theory and to

propose a theory that is entirely different, rather than to fix the holes within the theory.

The trend should be to modify and integrate. Lifschitz’s (1991) and Sandewall’s (1994)

recent work are welcome examples of this trend.

These, then, are the morals that our investigation has demonstrated:

1. Clearly define the problem one wishes to solve, and write down the set of criteria for

acceptance.

2. Resist the temptation to focus on toy problems.

3. Build upon previous research.

These lessons apply not only to the frame problem, but to all of temporal reasoning,

and not only to temporal reasoning, but to the entire endeavor of logicist AI. If we have

spent the past twenty-six years learning these lessons, they have been twenty-six years well

spent.
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